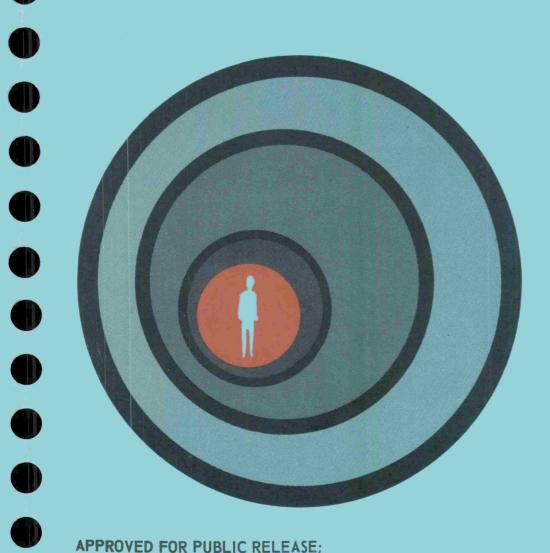
# STAEG

TRAINING
ANALYSIS
AND
EVALUATION
GROUP

TECHNICAL REPORT SECTION
NAVAL POSTGRADUATE SCHOOL
NAVAL POSTGRADUATE SCHOOL


TAEG REPORT

NO.

11 - 2

AD 786 702

APPLICATION OF SIMULATION TO INDIVIDUALIZED SELF—PACED TRAINING



FOCUS
ON
THE
TRAINED
MAN

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

SEPTEMBER 1974



TRAINING ANALYSIS AND EVALUATION GROUP
ORLANDO, FLORIDA 32813

TECHNICAL REPORT: TAEG REPORT NO. 11-2

Application of Simulation to Individualized
Self-Paced Training

#### ABSTRACT

Computer simulation is recognized as a valuable systems analysis research tool which enables the detailed examination, evaluation, and manipulation, under stated conditions, of a system without direct action on the system. This technique provides management with quantitative data on system performance and capabilities which can be used to compare proposed methods, concepts, or designs. The planning of a new Navy technical school provided the opportunity to demonstrate the feasibility and value of simulation as applied to training systems. The school was being programmed to use individualized self-paced instruction and, therefore, was considered to be representative of future instructional systems in the Navy. Not only would the replication of the system prove the feasibility of the application of simulation, but it would provide the training planners with the capability of assessing their particular conceptual system and of checking the validity of their assumptions.

# GOVERNMENT RIGHTS IN DATA STATEMENT

Reproduction of this publication in whole or in part is permitted for any purpose of the United States Government.

| Security Classification                                           |                       |            |                                   |   |
|-------------------------------------------------------------------|-----------------------|------------|-----------------------------------|---|
|                                                                   | TROL DATA - R & D     |            |                                   |   |
| (Security classification of title, body of abstract and indexing  |                       |            |                                   |   |
| 1. ORIGINATING ACTIVITY (Corporate author)                        | 2a. RI                | EPORT SE   | CURITY CLASSIFICATION             |   |
| Training Analysis and Evaluation Group                            |                       |            | sified                            |   |
| Orlando, FL 32813                                                 | 2b. G                 | ROUP       | `                                 |   |
| 3. REPORT TITLE                                                   |                       |            |                                   | - |
| Application of Simulation to Individualize                        | d Self-Paced Tra      | ining      |                                   |   |
| 4. DESCRIPTIVE NOTES (Type of report and inclusive dates)         |                       |            |                                   |   |
| Final Report 5. AUTHOR(S) (First name, middle initial, lest name) |                       |            |                                   |   |
| William H. Lindahl and James H. Gardner                           |                       |            | ,                                 |   |
| william n. Lindani and James n. Galdner                           |                       |            |                                   |   |
|                                                                   |                       |            |                                   |   |
| 6. REPORT DATE                                                    | 78. TOTAL NO. OF PAG  | ES         | 7b. NO. OF REFS                   |   |
| September 1974                                                    | 78 .                  |            | 9                                 |   |
| 88. CONTRACT OR GRANT NO.                                         | 94. ORIGINATOR'S REPO | ORT NUM    | BER(5)                            |   |
| b. PROJECT NO.                                                    | TAEG Report No        | . 11-2     |                                   |   |
| c. Work Assignment No. 1062                                       | 9b. OTHER REPORT NO   | (S) (Any o | ther numbers that may be assigned |   |
| d,                                                                |                       |            |                                   |   |
| 10. DISTRIBUTION STATEMENT                                        |                       |            |                                   |   |
| Approved for public release; distribution                         | is unlimited          |            |                                   |   |
|                                                                   |                       |            |                                   |   |
| 11. SUPPLEMENTARY NOTES                                           | 12. SPONSORING MILITA | BV ACTI    | VITV                              |   |
| II. SOPPLEMENTARY NOTES                                           | 12. SPONSORING MILITA | KI ACII    | ****                              |   |
|                                                                   |                       |            |                                   |   |
|                                                                   |                       |            |                                   |   |
| 13. ABSTRACT                                                      |                       |            |                                   |   |
| Computer simulation is recognized as                              | a valuable system     | ns ana     | lysis research tool               |   |
| which enables the detailed examination, ev                        |                       |            | -                                 |   |
| conditions, of a system without direct act                        |                       |            |                                   | S |
| management with quantitative data on syste                        | m performance and     | d capa     | bilities which can b              | e |
| management with quantitative data on byste                        |                       |            |                                   |   |

which enables the detailed examination, evaluation, and manipulation, under stated conditions, of a system without direct action on the system. This technique provides management with quantitative data on system performance and capabilities which can be used to compare proposed methods, concepts, or designs. The planning of a new Navy technical school provided the opportunity to demonstrate the feasibility and value of simulation as applied to training systems. The school was being programmed to use individualized self-paced instruction and, therefore, was considered to be representative of future instructional systems in the Navy. Not only would the replication of the system prove the feasibility of the application of simulation, but it would provide the training planners with the capability of assessing their particular

conceptual system and of checking the validity of their assumptions.

DD FORM (PAGE 1)

S/N 0102-014-6600

Unclassified

Security Classification

| Unclassification Security Classification                                                                             | LINK A LINK B LINK C | LINK A LINK B |      | INK A LINK B |      |                                         |  |
|----------------------------------------------------------------------------------------------------------------------|----------------------|---------------|------|--------------|------|-----------------------------------------|--|
| KEY WORDS                                                                                                            | ROLE                 | WT            | ROLE | WT           | ROLE | WT                                      |  |
| omputer Simulation ystems Analysis raining Systems Simulation nstructional Systems ndividualized Self-paced Training |                      |               |      |              |      | الله الله الله الله الله الله الله الله |  |
|                                                                                                                      |                      |               |      |              |      | 1 100                                   |  |
|                                                                                                                      |                      |               |      |              |      | 19. 19. 19.                             |  |
|                                                                                                                      |                      |               |      |              |      |                                         |  |
|                                                                                                                      |                      |               |      |              |      |                                         |  |
|                                                                                                                      |                      |               |      |              |      |                                         |  |
|                                                                                                                      |                      |               |      |              |      |                                         |  |
|                                                                                                                      |                      |               |      |              |      |                                         |  |
|                                                                                                                      |                      |               |      |              |      |                                         |  |

Unclassified

APPLICATION OF SIMULATION TO INDIVIDUALIZED SELF-PACED TRAINING

> WILLIAM H. LINDAHL JAMES H. GARDNER

TRAINING ANALYSIS AND EVALUATION GROUP SEPTEMBER 1974

H. C. OKRASKI, Acting Director Training Analysis and Evaluation Group

B. G. STONE, CAPT, USN

Director, Education and Training Research and Program Development,

Chief of Naval Education and Training

#### FOREWORD

This report is the second in a series concerned with the Training Analysis and Evaluation Group's (TAEG's) effort undertaken in partial fulfillment of the requirements of the Technical Development Plan (TDP) P43-03X, Part 01A, "Design of Training Systems."

A summary of the application of simulation to a training system is presented. The purpose of the report is to describe the goals of this effort and to outline the problem, approach, and results to date.

The report was prepared by Mr. J. Gardner, Operations Research Analyst,
Naval Training Equipment Center (NAVTRAEQUIPCEN) and Mr. W. Lindahl,
Operations Research Analyst, Training Analysis and Evaluation Group, Orlando,
Florida.

Appreciation is expressed to the members of the TAEG Electronic Warfare Project Team who provided guidance in the conceptualization of the training system and to Mr. L. Erhlich and Mr. R. Yanko, both of the IBM Corporation, for their assistance with the GPSS programming effort.

# TABLE OF CONTENTS

| Section | Pag                                      |
|---------|------------------------------------------|
| I       | INTRODUCTION                             |
|         | Purpose                                  |
|         | Background                               |
| II      | METHOD                                   |
|         | Define and Constrain the System 6        |
|         | Develop a Program and Execute            |
|         | Manipulate Variables and Analyze Outputs |
| III     | RESULTS                                  |
| IV      | CONCLUSIONS                              |
| V       | RECOMMENDATIONS                          |
|         | BIBLIOGRAPHY                             |
|         | APPENDIX A                               |
|         | APPENDIX B                               |
|         | APPENDIX C                               |

# LIST OF TABLES

| <u>Table</u> |                                                                                      | ] | Page |
|--------------|--------------------------------------------------------------------------------------|---|------|
| 1            | Completion Times for an Input Rate of Four Students Per Day                          | • | 18   |
| 2            | Average Completion Times                                                             | • | 22   |
| 3            | Expected Annual EW Operator Training System Output .                                 | ٠ | 22   |
|              |                                                                                      |   |      |
|              | LIST OF ILLUSTRATIONS                                                                |   |      |
| Figure       |                                                                                      | ] | Page |
| 1            | Individual Tracks Through Common Modules                                             | • | 3    |
| 2            | Time-Shared Dimension of Training Media                                              | • | . 4  |
| 3            | Proposed Student/Learning Module Matrix for EW Operator Training                     | • | 7    |
| 4            | Student Characteristics                                                              | • | 9    |
| 5            | Cumulative Exponential or Poisson Distribution Function to Describe Student Arrivals | • | 10   |
| 6            | Student Mix                                                                          | ٠ | 11   |
| 7            | Macro Model Flow                                                                     | • | 13   |
| 8            | Input/Output/Constraint Diagram                                                      | • | 14   |

#### SECTION I

#### INTRODUCTION

**PURPOSE** 

This study was performed under the aegis of the Technical Development Plan (TDP) P43-03X, Part 01A, "Design of Training Systems." The purpose of the study was to examine the feasibility of the application of computer simulation to an individualized self-paced training system. Computer simulation is recognized as a valuable systems analysis research tool which enables the detailed examination, evaluation, and manipulation, under stated conditions, of a system without direct action on the system. Since the optimal assignment of personnel and the maximum usage of equipment resources in training ase of paramount importance to the Navy, the demonstration of the feasibility of the application of simulation to the solution of scheduling problems is a contribution to the systematic management of instruction. While use of simulation is not unique in the area of system analysis, the application of simulation to a training system is unique. No documented simulation of a training system with individualized self-paced training could be found.

# BACKGROUND

The Design of Training Systems (DOTS) Project Team determined that an in-house effort to demonstrate the feasibility and usefulness of simulation to managers concerned with training was needed. The concurrent planning by another Training Analysis and Evaluation Group (TAEG) team for a new Electronic Warfare (EW) School provided the vehicle for the demonstration of a simulation technique. Since the EW School was being programmed to employ the latest techniques in training and education, it was considered an appropriate area of concentration. The simulation product(s) could then be generalized and applied to other specific applications by minor modifications.

The area chosen to demonstrate simulation capabilities was the instruction to be provided to the EW operator personnel at Corry Station, Pensacola, Florida.

The problem confronting the EW School planners is to provide individualized, self-paced instruction with the resources available and with a required output. In an individualized, self-paced instructional system, each student type proceeds through a prescribed course of instruction at his own pace. The prescribed course of instruction is composed of discrete instructional elements, or learning modules. The individual nature of the learning module prescriptions dictates that all students do not take all learning modules but travel through a track of modules tailored to their specific instructional needs. Figure 1 depicts the notion of individual tracks through common modules.

The problem of scheduling, planning, controlling, and forecasting for a system composed of learning modules is not merely a function of the students' learning rates in each module. Each module requires some form of training support media; e.g., programmed instruction, procedures trainers, or sound/slide (Figure 2).

The manager's problem is one of attempting to reduce student waiting times associated with learning modules by providing adequate numbers of modules and corresponding media for the modules. Given a required student output by type and number, the manager must determine the required input, the scheduling of the input, and the quantity and types of training media required to preclude bottlenecks in throughput rates, in order to meet the output requirements.

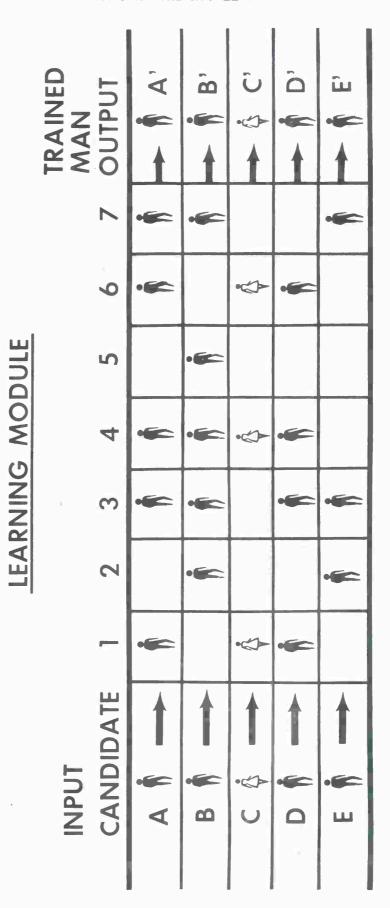



Figure 1. Individual Tracks Through Common Modules

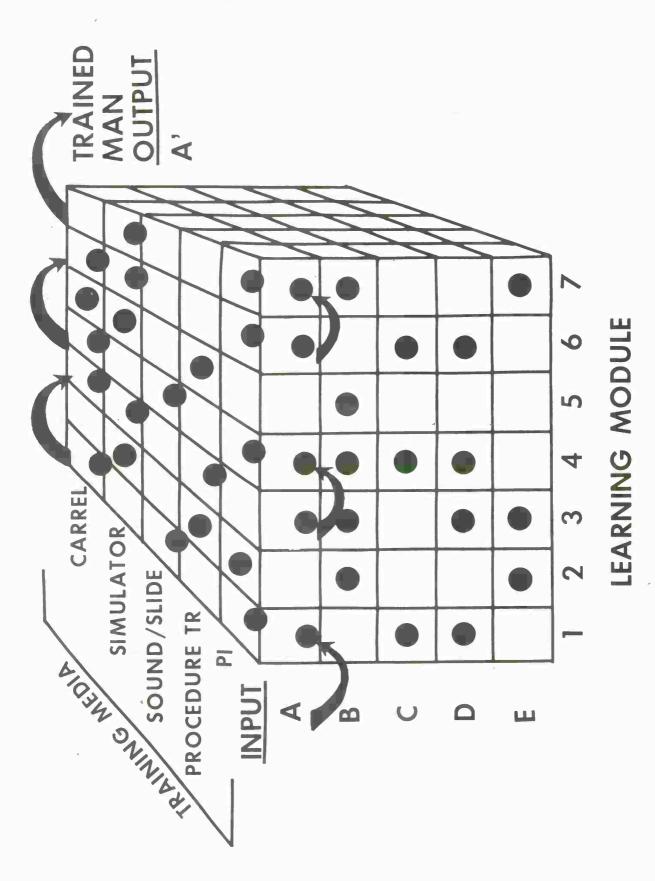



Figure 2, Time-shared Dimension of Training Media

#### SECTION II

#### **METHOD**

The feasibility study of applying simulation to EW operator training systems was structured to include the following: the selection of a representative training system, the selection of a simulation language, the development of a computer program to simulate the system, the manipulation of the simulated system to ask "what if" questions, the analysis of the output data, and a report documenting the study and recommendations. The EW Operator Training System was selected as an appropriate "test-bed" as it was considered to be representative of the approach to instruction to be employed in the Navy training system of the 1980's. In addition, the relative convenience with which system-specific data could be obtained from the TAEG's EW team made this selection doubly desirable.

The computer language selected for the simulation programming was General Purpose Simulation System (GPSS), developed by the IBM Corporation. This high-order computer language handles discrete-event models as network flow models. The selection of this language was due primarily to the possession of in-house programming capabilities utilizing GPSS and the accessibility of an IBM 360/40 computer with GPSS V capability.

The major steps involved in the simulation program developed in this study are the following:

- a. Define and constrain the system
- b. Develop a program and execute

c. Manipulate variables and analyze outputs

A description of each of these steps and their application in the development of the EW Operator Training System simulation are presented in detail in the remainder of this section.

#### DEFINE AND CONSTRAIN THE SYSTEM

The EW Operator Training System was defined by the EW TAEG team with the aid of EW planners. The conceptualized system is represented in Figure 3. There are seven types of students which flow through a total of 21 different learning modules. The system will be/is constrained by requirements promulgated by Chief of Naval Operations (CNO), Bureau of Naval Personnel (BUPERS), Chief of Naval Education and Training (CNET) and any other agency that can control the input or specify the output of the system either in personnel requirements and/or dollars. The system is further constrained by the fact that each learning module will have lesson plans that will be completed either in a multi-media carrel, an operational trainer, or in a special procedures trainer (aircraft). A multi-media carrel is an individual study booth equipped with a slide projector, tape deck, synchronizing system for sound/ slide programs, and an 8mm sound motion picture projector supported with programmed instruction and texts. An operational trainer is a training device in which trainee stations provide generalized representation of the functional capabilities of present and projected EW equipment. The system features student self-pacing through curriculum elements, active learning, immediate feedback, and defined remedial instructions. The special procedures trainers are two support aircraft with 20 student stations per aircraft for physiological student training purposes.

Thus the training environment is composed of the carrels, operational trainers, and support aircraft. The dynamic entities are associated with the student flow through the prescribed courses of instruction (see Figure 3). The data were initially developed by the EW planners using all available data and experience to date. As the system is installed and exercised, these data will be validated and revised accordingly.

|        | A DVANCED MISSION OPNS  A DVANCED MISSION OPNS  CAREER INFO  OUTPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOUADRON, EW TRAINING OFFICER | SURFACE EWO | MARINES | CTT (ELINT) | NFO | EW | PROSPECTIVE CO'S,<br>OPS/ CIC OFFICERS |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|---------|-------------|-----|----|----------------------------------------|
|        | CANACE MISSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                             | ×           | . ×     | ×           | ×   | ×  | ×                                      |
|        | ADVANCED ECM SIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                             | ×           | ×       | ×           | ×   | ×  |                                        |
|        | ADVANCED ECM SIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             | ×       |             | ×   |    | ×                                      |
| JLE    | WINDINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                             | ×           | ×       | ×           | ×   | ×  | ×                                      |
| 5      | MISTATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |             |         |             | ×   |    |                                        |
| MODUL  | MIS MIS MSJ CANDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                             |             | ×       |             | ×   | ×  |                                        |
|        | FUNAVCEONI ESW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                             | ×           | ×       | ×           | ×   | ×  | ×                                      |
| 9      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |             | ×       | ×           | ×   | ×  |                                        |
| Ē      | 111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                             | ×           | ×       | ×           | ×   | ×  | ×                                      |
| ARNING | A D VA WEWIAL ESM A D VA WEEVED ESM A D VA WEWENTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                             | ×           | ×       | ×           | ×   | ×  | ×                                      |
| LE/    | SIGNAL RECOG CONCEPTS  FUNDAMENTAL ESM  FUNDAMENTAL ESM  FUNDAMENTAL ESM  FUNDAMENTAL ESM  FUNDAMENTAL ESM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                             | ×           | ×       | ×           | ×   | ×  |                                        |
|        | EW RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                             | ×           | ×       | ×           | ×   | ×  | ×                                      |
|        | SIGN TO DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                             |             | ×       | ×           | ×   | ×  |                                        |
|        | INTRO 10 ORG PROCEDS  FUNDAMEN  FUND | ×                             | ×           | ×       | ×           | ×   | ×  | ×                                      |
|        | W301016 M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                             | ×           | ×       | ×           | ×   | ×  | ×                                      |
|        | FILE TRANS  SIGNAL RECEPT  FILE TRANS  SIGNAL RECEPT  FINE FUNCS  SIGNAL RECEPT  FINE FUNCS  FUNCS |                               |             | *       |             | *   | *  |                                        |
|        | SINO VAN 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                             | ×           | ×       | ×           | ×   | ×  | $\vdash$                               |
| ,      | FIECE FIFECTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | ×           | ×       | ×           | ×   | ×  |                                        |
|        | BASICAMAN PRE-EX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             | *       | *           | ×   | *  |                                        |
|        | OSINIAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\vdash$                      |             | *       | *           | ×   | *  |                                        |
|        | ANTHEMATICS<br>BASIC ELECTRON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                             | ×           | ×       | ×           | ×   | ×  | ×                                      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ^           |         | ^           | ^   |    |                                        |
|        | STUDENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOUADRON EW                   | SURFACE EWO | MARINES | CTT (ELINT) | NFO | EW | PROSPECTIVE CO'S,<br>OPS/CIC OFFICERS  |

\*REQUIRED IF NOT PREVIOUSLY OBTAINED OR IF PRE-EXAM INDICATES NEED

Proposed Student/Learning Module Matrix for EW Operator Training Figure 3.

0

# DEVELOP A PROGRAM AND EXECUTE

Each transaction in the EW operator training simulation program represents a student. Each student has certain characteristics which were described by the 13 possible characteristics listed in Figure 4. Subroutines in the main program represent two student scheduling procedures: (1) lesson plan, either in carrel or trainer, or (2) carrel, followed by trainer and back to carrel again.

Two smaller programs control time elements of the overall program. The first one controls the time of day or hours per training period and the other controls the number of days to be simulated. An exponential distribution function with different mean rates controls the student input rate. The type of student entering is determined by a discrete numerical function.

The cumulative exponential or Poisson distribution function which describes student arrivals is illustrated in Figure 5. A Poisson or exponential distribution states that the probability of k arrivals in time t is  $e^{-t/m}$  (t/m) k/k! where m is the mean interarrival time. The probability that the next arrival will occur within t time units is  $1-e^{-t/m}$ . In Figure 5 the probability value appears along the horizontal axis and t/m along the vertical axis. The interarrival time is obtained by multiplying the function value by m. The function gives results which are accurate to within 0.1 percent for  $45 < m \le 250$  and 1.0 percent for  $m \le 45$ .

The type of student, or student mix, entering the school is determined by a discrete numerical function. The student input population or percentage mix of student types was specified by the EW planners. Figure 6 graphically depicts the student mix. By using the GPSS function argument, RN 1, the following results are obtained: Squadron EW Training Officer if  $0 \le RN1 \le .0376$ , Surface EWO if  $.0367 < RN1 \le .0827$ , and so forth.

In the main program each transaction equals a student with 13 possible characteristics as follows:

Student M1, P1, P2, ....P12 (Transaction)

#### Where:

- M1 The Standard Numerical Attribute (SNA) for the transit time of the student currently being processed.
- P1 Student Type There are presently seven possible student types:
- (1) Squadron EW Training Officer, (2) Surface EWO, (3) Marines, (4) CTT(ELINT),
- (5) NFO, (6) EW, (7) Prospective CO's and OPS/CIC Officers.
- P2 Facilities Counter Locates which one of 90 possible trainers is unoccupied.
- P3 Number Counter Determines which class schedule (learning track) to put student through for the first nine classes or learning modules.
- P4 Learning Module Number Student is placed in a particular module (26 possible) according to his prescribed learning track.
- P5 Lesson Plan Number Used for first nine modules and is a function of the particular learning module.
- P6 Average time for lesson plan within module.
- P7 Time deviate for each lesson plan.
- P8 Special Number Counter for particular Lesson Plan Groups (carrel vs. operational trainer) within module. Basically, same as P3, except this counter is peculiar to modules 10 through 26.
- P9 Lesson Plan Number used for modules 10 through 26; concerns both carrel and operational trainer.
- P10 Not used (available for other desirable attributes).
- Pl1 Time student enters school.
- P12 Subroutine transfer counter.

Figure 4. Student Characteristics

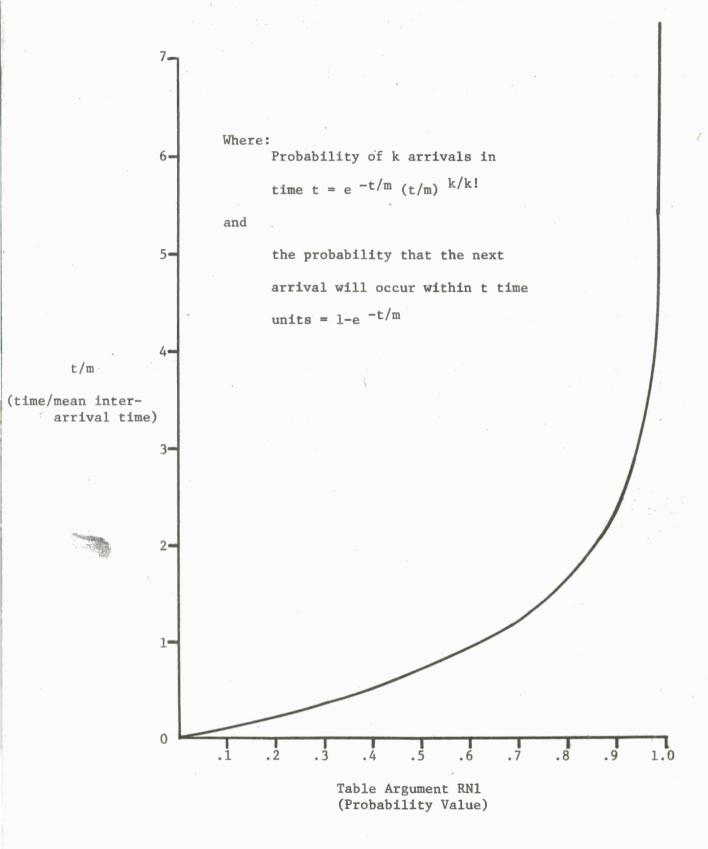
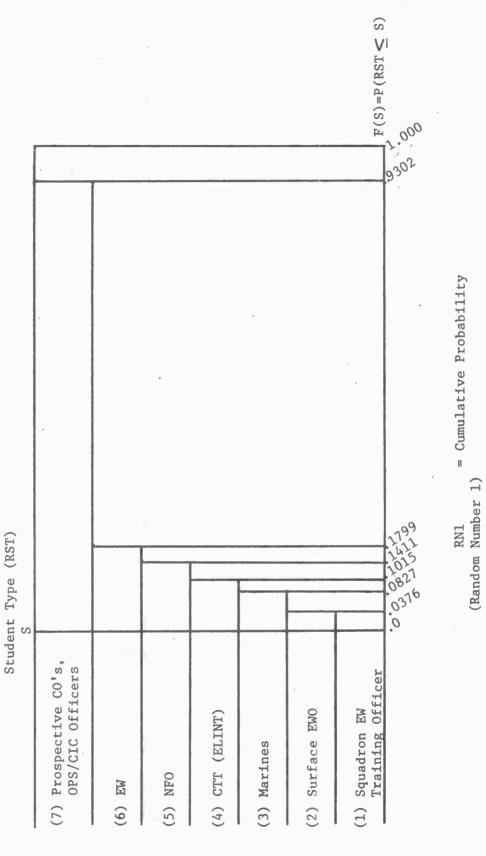




Figure 5. Cumulative Exponential or Poisson Distribution Function to Describe Student Arrivals

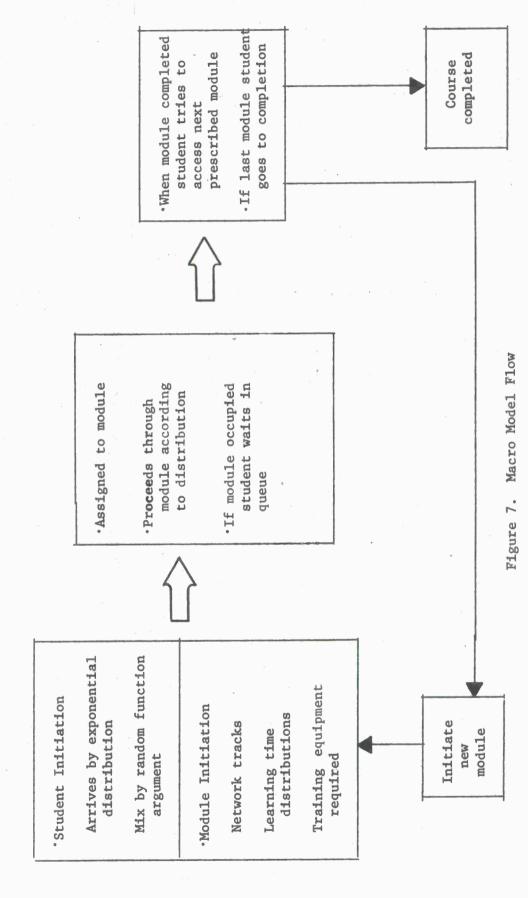


Possible Values of

Random

Example: If .1411 < RN1 < 1799, student type is (5) NFO

Figure 6. Student Mix


Each type of student has an individual track set up by one of two student schedule subroutines, which uses a list numerical function to pick the classes or modules, the number of lesson plans, and the mean times as well as deviations about that time in the lesson plan. Boolean variable entities are used at key decision blocks to determine individual student paths through the network.

The overall concept of the simulation program for this particular application can be better understood by referring to Figure 7 which gives a Macro view of the model. Basically, there are three phases of the student flow which are of concern in the program: an initiation phase, an execution phase, and a completion phase. The student arrival and type are determined as described above. The specific network track is specified by the conceptual system shown in Figure 3. As the student progresses, he is assigned to the proper module and is processed through that module according to a normative distribution of lesson plan times. If the module is occupied, he waits in a queue until it is available. Intrinsic in this scheduling is the consideration of length of the school day. If the student is currently in a module he will complete that particular lesson before leaving. This process is iterative in nature until the prescribed network path is completed. Statistical data are compiled for all phases of his progress.

#### MANIPULATE VARIABLES AND ANALYZE OUTPUTS

The manipulation of variables and the resultant analysis of outputs is an ongoing task. Initially, the system was run with certain inputs. The outputs were then observed to determine adequacy with the specified requirements. Figure 8 illustrates the inputs/outputs/constraints of the system.

By manipulating the variables under his control, the manager can determine



Completion Phase

Execution Phase

Initiation Phase

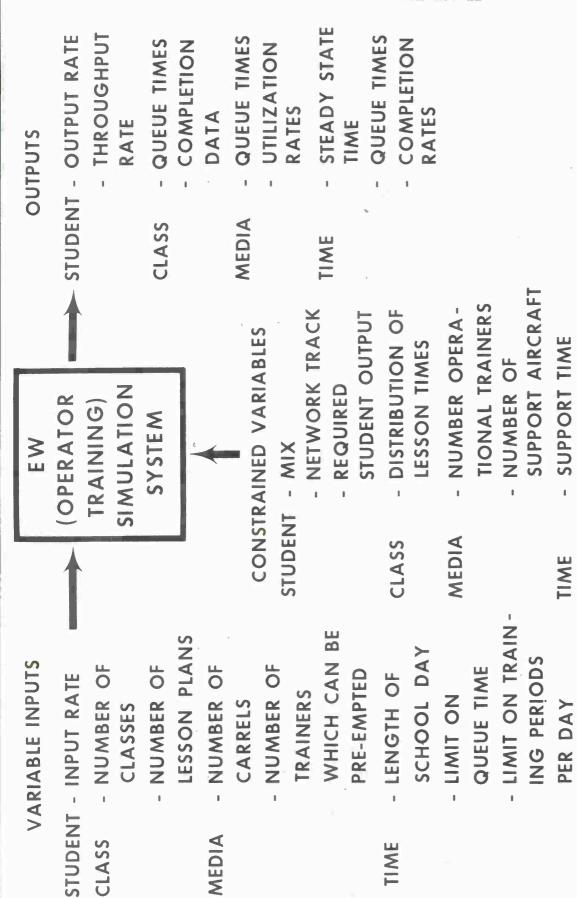



Figure 8. Input/Output/Constraint Diagram

what effect this will have on the output. To date, the input variables have been held constant except for student input rate in order to examine the capacities of the conceptualized system. The results of this exercise are presented in Section III.

## SECTION III

#### RESULTS

Since the requirement for trained EW operators by number and type was exogenous to their system (specified by CNO), this was considered to be the driving force of the system. This coupled with an austere budget, yet relatively free to determine, or at least suggest, how that budgeted money would be expended on training media, the planners needed to insure that the conceptualized system would meet the required output within the dollar constraints. The range of items under consideration is shown in Figure 8.

0

In order to perform comparative analyses of system capabilities or to compare alternative system strategies, certain input variables should remain constant together with the constrained variables, while other key controllable input variables are manipulated.

The conceptual system as described in Figure 3 was analyzed by the EW planners in TAEG to determine the mix of media for each module which would satisfy the overall training requirements within the dollar constraints. Initially, the number of multi-media carrels was set at 220, the number of operational trainers was set at 90, and the number of support aircraft was set at 2 with 30 student positions per aircraft. By keeping variables such as the number of classes, lesson plans per class, and the distributions of time for each lesson plan constant and varying the student input rate, the planners were able to get an idea of the capacity and limits of the conceptualized system.

Once the conceptual system was adequately defined and constrained, the simulation was reduced to the iterative process of execution, manipulation, and analysis of the outputs for the program. Three student input rates were simulated and compared. The input rates were four, six, and eight

students per day, with the arrival times and appropriate mix determined by the methods described in Section II.

A brief discussion of the results for each of the three input rates is presented below. Details of the simulation program, i.e., program listing, flow charts, and sample output, are contained in Appendices A, B and C respectively. Standard GPSS output provides a great amount of tabulated statistical data on the system being simulated. In this particular application much of these data were not relevant to the problems under consideration. However, in the future, much of these data may prove useful for the "fine tuning" of the system once it becomes operational.

# a. Four Students Per Day

At an input rate of four students per day the most significant output of the simulation was the fact that no queues were observed. Students proceeded through the system without any delays caused by the unavailability of media. Under these conditions the observed completion times are considered to be optimal. The completion times for an input rate of four students per day are summarized in Table 1.

TABLE 1. COMPLETION TIMES FOR AN INPUT RATE OF FOUR STUDENTS PER DAY

| Type Student                       | Completio<br>Maximum | n Time (in day<br>Minimum Mea |         |
|------------------------------------|----------------------|-------------------------------|---------|
| Squadron EW Training Officer       | 38                   | 36 36.6                       | 7 0.707 |
| Surface EWO                        | 39                   | 34 36.7                       | 1 1.601 |
| Marines                            | 53                   | 52 52.3                       | 3 0.577 |
| CTT (ELINT)                        | 48                   | 41 43.8                       | 2 2.085 |
| NFO                                | 53                   | 51 51.7                       | 0.915   |
| EW                                 | 54                   | 41 47.1                       | 7 2.855 |
| Prospective CO's, OPS/CIC Officers | 25                   | 21 22.8                       | 2 1.128 |

These figures not only represent the expected average completion time for each type of student in the system defined but give support to the efficacy of employing individualized, self-paced instruction. These average completion times represent a reduction in instruction time over the traditional lock-step type of instruction of approximately 30 percent. For example, a representative EW traditional lock-step form of instruction would require approximately 65 hours, whereas in our example the time required is approximately 47 hours, or a reduction in time of about 28 percent.

# b. Six Students Per Day

When the input rate is increased from four to six students per day, queues begin to develop. However, the queues have a negligible effect on the completion times associated with each student type. The reason for this is that the queues affect an insignificant number of students. This is shown by the following output data:

| Type of facility    | Average length of queue | affected |
|---------------------|-------------------------|----------|
| Carre1              | 44.58 minutes           | 1.10     |
| Operational Trainer | 41.97 minutes           | 0.60     |

This means that 98.9 percent of the students in the system experienced no queuing associated with carrels and 99.4 percent had no queues with operational trainer usage. While the net effect on average completion times for all students, expressed in days, was not significant, any queue over 30 minutes was arbitrarily considered serious from a student motivational standpoint. Detailed analysis of the system output data associated with each queue could remedy this situation by the addition of, or the manipulation of, media associated with the queue. Since the average completion times were considered to be more significant indicators of system performance, and the

minor fluctuations observed in these times were attributed more to the errors associated with the GPSS random number arguments and distribution times than to the queues, efforts to reduce the queues were deemed unnecessary.

## c. Eight Students Per Day

The training system continued to perform as prescribed when the input rate was increased to eight students per day, with the average completion rates remaining stable. The queues began to become significant at this input rate—approaching three hours for the carrels and one hour for operational trainers. However, the percent of students experiencing queues was still relatively low; i.e., 5.6 percent for carrels and 4.7 percent for operational trainers. Even though the queues appear excessive, the time compression resulting from the use of individualized self-paced instruction versus traditional instruction would indicate that these queues may be tolerable. If a 30 percent reduction in instruction time is anticipated, then a queue of three hours 5.6 percent of the time does not seem significant. Before any adjustments are made to reduce the queues, tradeoffs should be considered between the cost of adding media, the disadvantages of a student waiting for the media, the overall effect on the student's completion rate, and so on.

Simulation runs utilizing input rates greater than eight students/day were not attempted since the computational limits of the processing equipment were being approached. With an input rate of eight students/day there were approximately 500 students in the system which had to be monitored and the computer processing time became prohibitive. Most applications of simulation to training systems should not be as complex as the system examined in this

study and, therefore, should not present this problem. If it does prove prohibitive, larger processing equipment should be obtained to conduct the simulation.

The results of these simulation runs indicate that the conceptual EW Operator Training System as defined and constrained will have the capability to meet the specified system requirements. As shown in Table 2, the average completion times are fairly constant over the input rates chosen. While queues develop for the six and eight students per day input rates, the impact on the average completion times is not readily discernible. The queues do impact the output of the system since more people are maintained in the system as the input rate and the queues increase. Table 3 represents an extrapolated summary of expected annual output for the system. With an input rate of four students per day, 187 students occupy the system once steadystate conditions are reached. For six and eight students per day, the number of students in the system increases to 314 and 438 respectively. There appears to be no need to increase quantities of training media to reduce the queues associated with higher input rates since the lower rates will satisfy the specified output requirements. Once the conceptual system becomes operational, however, some manipulation or addition of media for certain modules may prove desirable as experience is gained. A more accurate emulation of the system will be possible after real world systems data are available and the assumptions and estimates reflecting system performance are verified.

TABLE 2. AVERAGE COMPLETION TIMES (IN DAYS)

| Type Student                       | Input Rate | (Students Po | er Day) |
|------------------------------------|------------|--------------|---------|
|                                    | 4          | 6            | 8       |
| Squadron EW Training Officer       | 36.6       | 37.4         | 37.3    |
| Surface EWO                        | 36.7       | 36.6         | 37.5    |
| Marines                            | 52.3       | 49.2         | 51.7    |
| CTT (ELINT)                        | 43.8       | 44.0         | 44.3    |
| NFO                                | 51.7       | 53.4         | 52.6    |
| EW                                 | 47.2       | 47.4         | 47.6    |
| Prospective CO's, OPS/CIC Officers | 22.8       | 22.2         | 23.0    |

TABLE 3. EXPECTED ANNUAL EW OPERATOR TRAINING SYSTEM OUTPUT

| Type Student                       | Input R | ate (Student | s Per Day) |
|------------------------------------|---------|--------------|------------|
|                                    | 4       | 6            | 8          |
| Squadron EW Training Officer       | 32      | 47           | 58         |
| Squadron EWO                       | 38      | 56           | 70         |
| Marines                            | 16      | 23           | 29         |
| CTT (ELINT)                        | 34      | 50           | 61         |
| NFO                                | 33      | 48           | 59         |
| EW                                 | 640     | 935          | 1157       |
| Prospective CO's, OPS/CIC Officers | 60      | 87           | 108        |
| Totals                             | 853     | 1246         | 1542       |

#### SECTION IV

#### CONCLUSIONS

Simulation of a training system by computer can provide useful analytical capability which enhances the manager's ability to assess requirements and capacities while formulating various alternatives to a problem.

0

0

The simulation technique described and applied in this report provides a powerful analytical capability for EW planners. Changes in student input rates can be examined systematically to assess the effect of achieving personnel and resources in steady state of the system. In addition, the effects of changing learning modules, lesson plans, and training support equipment on the training system can be determined. The queuing effects expected at the carrels or trainers can also be examined as a function of changes in student mix, input rates or as other pertinent variables are changed. The training manager can get a reasonable idea of the different student throughput rates and how the throughput rates are affected by changes in the input variables. The list of system entities and how they can be analyzed is extensive. The particular problem facing the manager dictates the area of analysis. The simulation described here provides the vehicle for such analysis. During the system definition, the manager is forced to analyze his system. This forced system analysis provides training management perspectives heretofore unavailable.

It should be noted that simulation models do not yield absolute solutions to problems. This generic type of model only replicates the system described to the level of detail it is designed. It does, however, provide an invaluable tool for management to assess the validity or consequences of assumptions, thus enabling a more systematic and realistic solution to a

planning problem. The ultimate decision-making responsibility still rests with the manager; simulation and other analytical techniques are only tools for increasing the effectiveness of the manager.

#### SECTION V

#### RECOMMENDATIONS

The power of simulation as a planning tool for training system consideration has been demonstrated in this study. However, before continued effort is expended either on this specific application, i.e., EW operator training, or on the modification of the simulation programs to a generalized individualized self-paced instructional system, detailed analysis of assumptions made and the relevance of particular outputs is needed. Specific problems, which are suited to analysis by simulation of the system, must be examined on their individual merits. This case-by-case assessment would allow the formatting of output data to satisfy the problem needs and allow rapid assessment and possible solutions.

Training plans, and the formulation of training plans, should include simulation as well as other analytical techniques, as applicable. "As applicable" implies that the analysis warrants the potential benefits or cost savings accrued from the application of the technique. Training plans, especially for conceptual systems, need more accurate ways of determining the capacities and requirements of proposed training systems.

0

In addition to providing real quantifiable data for comparison in planning for training, simulation can provide realistic data for budget considerations. These data, for example, would provide timely inputs to the Program Objective Memorandum (POM).

The ability and requirement "to do" simulations should be undertaken by staff groups, either military or civilian, which have programming and system analysis capabilities.

The use of simulation for other specific applications should be addressed as the need arises. The installation of individualized self-paced instructional systems in the Navy is still in the beginning stages. As these instructional systems become prominent in the Navy, the need for employing analytic tools, such as simulation in the design for and control of training, is clear and it is urgent.

## BIBLIOGRAPHY

- Andrew, Gary M. and Moir, Ronald E. <u>Information-Decision Systems in Education</u>. Itasca, Illinois: F. E. Peacock. 1970.
- Electronic Warfare Training Analysis. TAEG Report 4. 1972. Naval Training Equipment Center. Orlando, Florida.
- General Purpose Simulation System V User's Manual. SH 20-0851-1.

  August 1971. IBM Corporation, Technical Publications Department.

  White Plains, New York.
- Greenberg, Stanley. GPSS Primer. New York: Wiley Interscience. 1972.
- Hammond, John S. "Do's and Don'ts of Computer Models for Planning."

  Harvard Business Review. March-April 1974, pages 110-123.
- Hammond, John S. "The Role of the Manager and Management Scientist in Successful Implementation." Sloan Management Review. Winter 1974.
- Pearson, Ted E.; MacKeraghan, Lysle R.; Stubbs, Willard B.; and Moore, Jr., Edward O. Electronic Warfare Maintenance Training Analysis,

  Executive Summary. TAEG Report No. 9-1. 1974. Naval Training Equipment Center. Orlando, Florida.
- Pearson, Ted E.; MacKeraghan, Lysle R.; Stubbs, Willard B.; and Moore, Jr., Edward O. Electronic Warfare Maintenance Training Analysis. TAEG Report No. 9-2. 1974. Naval Training Equipment Center. Orlando, Florida.
- Richmond, Samuel B. Operations Research for Management Decisions.

  New York: The Ronald Press Company, 1968.

APPENDIX A

# CONTROL CARDS

This program was run on an IBM 360/40 using GPSS V with the following control cards:

```
//NAVY JOB TIME=600
                 PGM=DAGO1V, PARM=B, TIME=600
//EXECS EXEC
//DOUTPUT
            DD
                    SYSOUT=A
            DD
                   UNIT=SYSDA, SPACE=(TRK, (10,10))
//DINTERO
//DSYMTAB
            DD
                   UNIT=SYSDA, SPACE=(TRK, 10, 10))
//DREPTGEN DD
                   UNIT=SYSDA, SPACE=(TRK, (10,10))
            DD
                   UNIT=(SYSDA, SEP=(DINTERO)), SPACE=(TRK, (10,10))
//DINTWORK
            DD UNIT=2400, VOL=SER=NEWTAP, LABEL=(,NL), DISP=(OLD, PASS)
//DRDSAVEO
            DD UNIT=2400, VOL=SER=OLDTAP, LABEL=(,NL), DISP=(OLD, PASS)
//DRDSAVEI
                     UNIT=SYSDA, SPACE=(TRK, (1,1))
//DXREFDS
//DINPUT1
            DD
       REALLOCATE VAR, 11, FSV, 20, HSV, 20, CHA, 15, BLO, 250, FAC, 100
       REALLOCATE STO, 10, QUE, 30, LOG, 10, TAB, 10, FUN, 20, GRP, 0, BVR, 24
       REALLOCATE COM, 56868
```

### BOOLEAN VARIABLES

```
((P1 | E | 3) + (P1 | E | 4) + (P1 | E | 6)) * (P4 | E | 1)
    BVARIABLE
 1
                ((P11E13)+(P11E14)+(P11E16))*(P41E12)
    BVARIABLE
                ((P1|E|3)+(P1|E|5)+(P1|E|6))*(P4|E'5)
 3
    BVARIABLE
                ((P1 1 E 17) * (P4 1 E 125))+(P4 1 E 126)
 6
    BVARIABLE
                FNI61+FN162+FN163+FN164+FN165+FN166+FN167+FN168+FN169
    BVARIABLE
                FN170+FN171+FN172+FN173+FN174+FN175+FN176+FN177+FN178
    BVARIABLE
 7
                FNI79+FNI80+FNI81+FNI82+FNI83+FNI84+FNI85+FNI86+FNI87
    BYARIABLE
    BVARIABLE
                FN189+FN189+FN190
 9
    SVARIABLE
                BV5+8V6+8V7+8V8
                (P11NE17)*((P81E19)+(P81E123))+BV11+(BV12*BV13)+BV14
 10 BVARIABLE
                ((P11L13)*(P81E132))
 11
   BVARIABLE
                ((P1'E'3)+(P1'E'4)+(P1'E'5)+(P1'E'6))
    BVARIABLE
 12
 13 BVARIABLE
                ((P81E126)+(P81E135))
                (P1|E|7)*((P8|E|4)+(P8|E|13))
14
    BVARIABLE
 15 SVARIABLE
                ((P11E11)*(P81E139))+BV18+BV16+BV17
                ((P11E13)+(P11E15)+(P11E16))*(P81E142)
 16 BVARIABLE
 17 BVARIABLE
                ((P11E17)*(P81E118))+8V23
                (P11E12)*(P81E137)
 15 SVARIABLE
                (P11NE17)*((P81E118)+(P81E122))+BV20+(8V12*BV21)+6V22
 19
   BVARIABLE
 20 BVARIABLE
                (P11L13)*(P81E131)
 21 PVARIABLE
                ((P81E125)+(P81E134))
                (P11E17)*((P81E13)+(P81E112))
 22 BVARIABLE
                ((P11214)*(PR1E140))
 23
    BVARIABLE
```

### VARIABLES, MATRIX, STORAGE

```
15-F1-F2-F3-F4-F5-F6-F7-F8-F9-F10-F11-F12-F13-F14-F15
  1 VARIABLE
               12-F16-F17-F18-F19-F20-F21-F22-F23-F24-F25-F26-F27
  2 VARIABLE
  3 VARIABLE
               12-F30-F31-F32-F33-F34-F35-F36-F37-F38-F39-F40-F41
               12-F43-F44-F45-F46-F47-F48-F49-F50-F51-F52-F53-F54
  4 VARIABLE
               12-F56-F57-F58-F59-F60-F61-F62-F63-F64-F65-F66-F67
  5 VARIABLE
               12-F69-F70-F71-F72-F73-F74-F75-F76-F77-F78-F79-F80
  6 VARIABLE
               09-F82-F83-F84-F85-F86-F87-F88-F89-F90
 7 VARIABLE
               V1+V2+V3+V4+V5+V6+V7+V10
  8 VARIABLE
               MP11/48
 9 FVARIABLE
 10 VARIABLE
               06-F29-F42-F55-F68-F81-F28
1
    MATRIX
               H, 28, 7
2
    MATRIX
               Ho107
3
    MATRIX
               H=1=1
    INITIAL
               LS1
```

STORAGE \$1,220/\$2,90/\$3,50

#### FUNCTIONS

- SETO FUNCTION P3, L18 SQDN EW TRNG OFFICER SCHEDUAL ,4/,6/,7/,8/,9/,10/,11/,12/,13/,14/,17/,18/,19/,20/,21/,22/,25/,26
- BEWO FUNCTION P3, L16 SURFACE EWO TRAINING SCHEDUAL 3/,4/,6/,7/,9/,10/,11/,12/,13/,14/,17/,18/,21/,22/,25/,26
- CTTE FUNCTION P3,L21 CTT(ELINT) TRAINING SCHEDUAL
  1/,2/,3/,4/,6/,7/,8/,9/,10/,11/,12/,13/,14/,15/,16/,17/,18/,21/,22
  ,25/,26
- RDCD FUNCTION P3,L13 PROSPECTIVE CO'S
  ,6/,7/,9/,12/,13/,14/,17/,18/,21/,22/,23/,24/,25
- LASS FUNCTION P4,L26 TIMING FOR EACH CLASS 8/,4/,4/,4/,17/,4/,5/,2/,3/,4/,6/,2/,5/,16/,5/,7/,5/,5 4/,6/,6/,5/,7/,5/,8/,3
- LOOP FUNCTION P4, L9 LOOPING WITHIN THE FIRST 9 CLASSES

- SGEW FUNCTION P8,L41 LOOPING LESSON PLAN FOR SODN EW TRNG OFFICER ,57,2/,2/,1/,1/,2/,1/,1/,2/,1/,1/,2/,2/,1/,1/,2/,2/,1/,1/,2/,2/,2/,2/,2/,2/,1/,1/,1/,2/,2/,2/,2/,2/,4/,4/,3/,5/,1/,4/,2/,3/,3
- SUEWM FUNCTION P8, L39 LOOPING LESSON PLAN FOR SURFACE EWO 5/,2/,2/,1/,1/,2/,1/,1/,2/,2/,2/,2/,2/,1/,1/,1/,2/,2/,2/,2/,2/,2/,1/,1/,1/,2/,2/,2/,2/,2/,3/,5/,1/,1/,2/,2/,2/,2/,2/,2/,2/,3/,5/,1/,4/,2/,3/,3
- FUNCTION RN2, D7 .0376, 1/.0827, 2/.1015, 3/.1411, 4/.1799, 5/.9302, 6/1., 7
- EXPONENTIAL PROBABILITY DISTRIBUTION 30,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38/.81.6/.84,1.83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2/.77,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9997,8

| CARRL |              |                 |
|-------|--------------|-----------------|
| CARRL | ASSIGN       | 12+,1           |
| WON   | GATE LS      | KAY, ZIPE       |
|       | <b>CUEUE</b> | P4              |
|       | QUEUE        | 27              |
|       | ENTER        | 1               |
| •     | DEPART       | P4              |
|       | DEPART       | 27              |
|       | ADVANCE      | P6, P7          |
|       | LEAVE        | 1               |
| 0     | LOOP         | 9, WUN          |
|       | TRANSFER     | ,P12            |
| ZIPE  | LINK         | HEME, FIFT, GON |
| GUN   | GATE LS      | KAY             |
|       | ADVANCE      | 2. FNSEXPON     |
|       | TRANSFER     | WON             |

# SUBROUTINES

### CAREL

| CAKEL | ASSIGN     | 12+,1            |
|-------|------------|------------------|
| NOW   | GATE LS    | KAY, ZIPER       |
|       | QUEUE      | P4               |
|       | QUEUE      | 27               |
|       | ENTER      | 1                |
|       | DEPART     | 04               |
|       | DEPART     | 27               |
|       | ADVANCE    | P6.87            |
|       | LEAVE      | 1                |
|       | LOOP       | 5, NOW           |
|       | MSAVEVALUE | 1+0P40P1010H     |
|       | TPANSFER   | ,P12             |
| ZIPER | LINK       | HOME, FIFO, GONE |
| GONE  |            | KAY              |
|       | ADVANCE    | 2.FNSEXPON       |
|       | TRANSFER   | NOW              |

| OTSTA  |          |                     |
|--------|----------|---------------------|
| OTETA  | ASSIGN   | 124-1               |
|        | GATE LS  | 12+,1<br>KAY, NONER |
| OUT O  | QUEUE    | P4                  |
|        | SUERE    | 28                  |
|        | TEST NE  | V8,0                |
|        |          |                     |
|        | ENTER    | 2<br>P 4            |
|        | DEPART   | *                   |
| 4.4.11 | DEPART   | 2.8                 |
| JAMES  |          | 2+,1                |
|        | GATE NU  | P2,FIND             |
|        | SEIZE    | P2                  |
|        | ADVANCE  |                     |
| ,      | RELEASE  | P2                  |
|        | LEAVE    | 2                   |
|        |          | P2,90, INIAT        |
| ZIP    | LOUP     | 9,GDTU              |
| •      | TRANSFER | ,P12                |
| NONER  | LINK     | INTO, FTFO, SUE     |
|        | GATE LS  | KAY                 |
|        | ADVANCE  | 2. FNSEXPON         |
|        | TRANSFER | GOTO                |
| INIAT  | ASSIGN   | 2-,90               |
|        | TRANSFER | , Z I P             |
| FIND   | TEST L   | P2,90, ZERDO        |
|        | TRANSFER |                     |
| ZEROD  | ASSIGN   | 2-,90               |
|        | TRANSEED | LAMES               |

| ASIGN | ASSIGN   | 3+,1        |
|-------|----------|-------------|
|       | TEST E   | P1,1,*+3    |
|       | ASSIGN   | 4, FN\$SETO |
|       | TRANSFER | ,*+19       |
|       | TEST E   | P1,2,*+3    |
|       | ASSIGN   | 4, FNSSEWD  |
|       | TRANSFER | ,*+16       |
|       | TEST E   | P1,3,*+3    |
|       | ASSIGN   | 4,P3        |
|       | TRANSFER | *+13        |
|       | TEST E   | P1,4,*+3    |
|       | ASSTON   | 4, FNSCTTE  |
|       | TRANSFER | p*+1()      |
| •     | TEST E   | P1,5,*+3    |
|       | ASSIGN   | 4,P3        |
|       | TRANSFER | , *+7       |
|       | TEST E   | P1,6,*+5    |
|       | TEST E   | P3,23,*+2   |
|       |          | 3+,2        |
|       | ASSIGN   | 4, P3       |
|       | ASSIGN   | · ·         |
|       | TRANSFER | 4 FNSPROCO  |
|       | ASSIGN   |             |
|       | ASSIGN   | 6, FNSCLASS |
|       | ASSIGN   | 7, FNSTIME  |
|       | TRANSFER | P,12,1      |
|       |          |             |

# HOWRD

| HOWRD | ASSIGN   | 8+>1        |
|-------|----------|-------------|
|       | TEST E   | P1,1,*+3    |
|       | ASSIGN   | 9, FNSSOEW  |
|       | TRANSFER |             |
|       | TEST E   | A           |
|       | ASSIGN   | P1,2,*+3    |
|       |          | 9. FNSSUEWE |
|       | TRANSFER | RON         |
|       | TEST E   | P1,3,*+3    |
|       | ASSIGN   | 9. FNSGETIT |
|       | TRANSFER | RON         |
|       | TEST E   | P1,4,*+3    |
|       | ASSIGN   | 9. FNSELINT |
|       | TRANSFER | RON         |
|       | TEST E   | P1,5,*+3    |
|       | ASSIGN   | 9, FNSGETIT |
|       | TRANSFER | RON         |
|       | TEST E   | P1,6,*+3    |
|       | ASSIGN   | 9, FNSGETIT |
|       | TRANSFER | ·*+2        |
|       | ASSIGN   | 9. FNSPCOX  |
| RON   | TRANSFER | P. 12.1     |
|       |          |             |

### TIME-ORIENTED PROGRAMS

ORNERATE 16

NXDAY ADVANCE 16

LOGIC I KAY

ADVANCE 32

TRANSFER SBR, UNLKH, 12

TRANSFER , NXDAY

UNLYH LOGIC I KAY

UNLINK HOME, GONE, ALL
UNLINK HEME, GON, ALL
UNLINK BETA, INFO, ALL

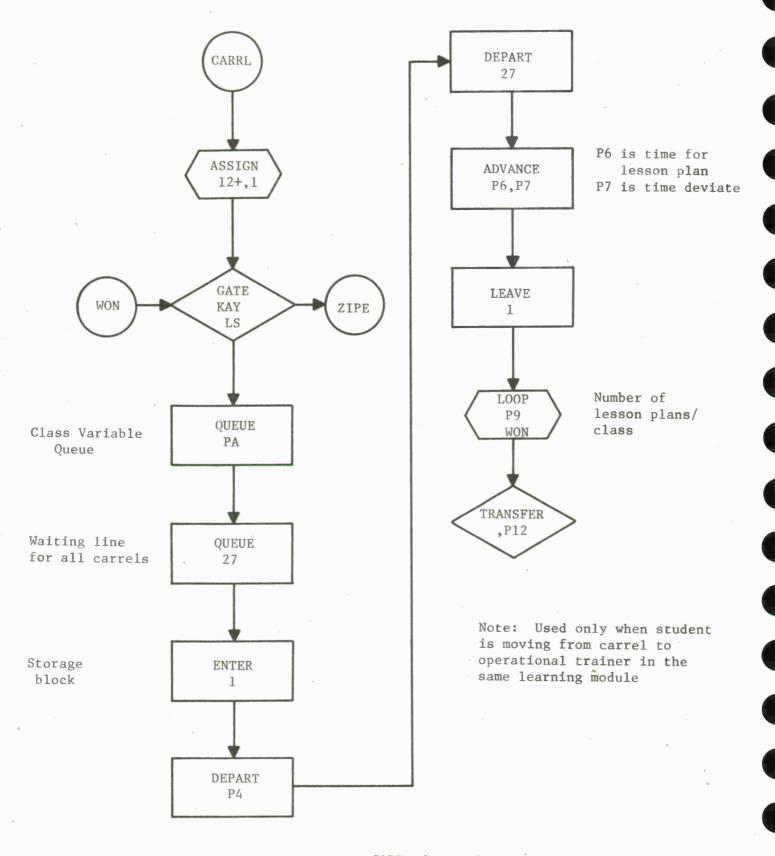
UNLINK INTO, SUE, ALL UNLINK TWO, GOLF, ALL

TRANSFER P, 12, 1

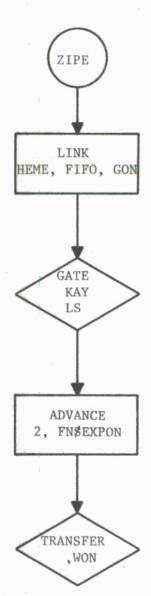
GENERATE 16 TERMINATE 1

DESTROY ABOVE XACT; DECRIMIT RUN TERM. COUNT

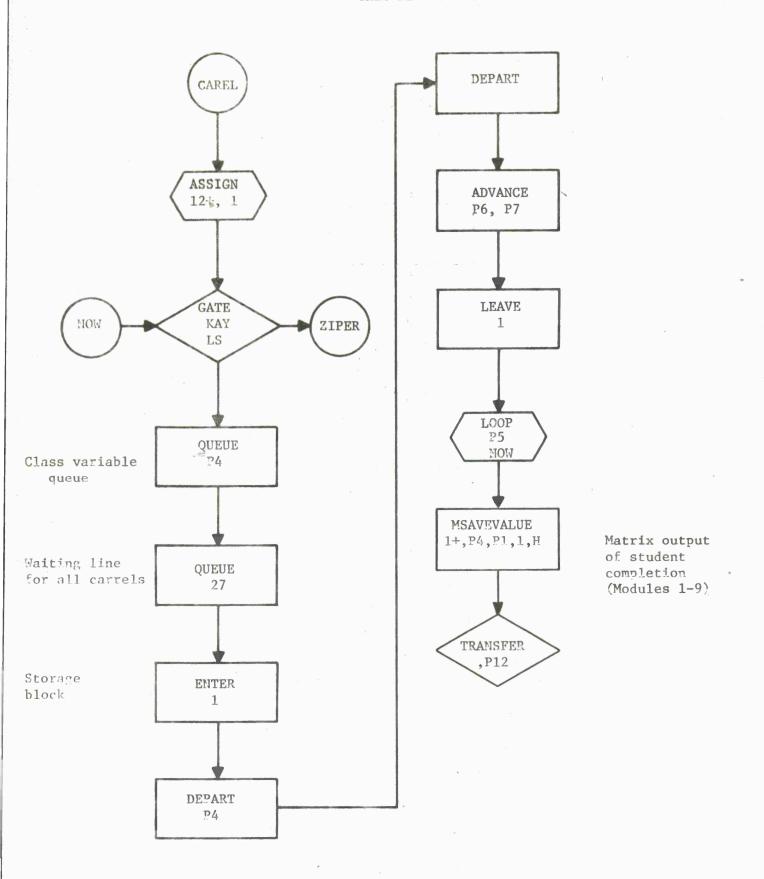
#### MAIN PROGRAM


```
STT
      GENERATE
                   12. FNSEXPON
      ASSIGN
                   1, FN2
      MARK
                   11
                   2+,1,P1,1,H
      MSAVEVALUE
 EVON TRANSFER
                   SBR, ASIGN, 12
      ASSIGN
                   5. FNSLOOP
      TEST E
                   BV1, 1, MOON
                   . 455, EVON, WHITE
      TRANSFER
                   BV2, 1, STAR
 MOON TEST E
                   .556, EVON, WHITE
      TRANSFER
 STAR TEST E
                   BV3, 1, WHITE
                   .700, EVON, WINN
                                          GD TO PHYSIOL AND PSYCHOL. ROUTINE
      TRANSFER
WHITE TRANSFER
                   SBR, CAREL, 12
      TEST E
                   P4,9,EVON
TEPEE TRANSFER
                   SBR, ASIGN, 12
      TRANSFER
                   SBR, HOWRD, 12
                   SBR, CARRL, 12
      TRANSFER
      TEST E
                   BV15,0, THINK
      TEST E
                   BV10,1, IBM
      MSAVEVALUE 1+,P4,P1,1,H
                   3+,1
      ASSIGN
                   TEPEE
      TRANSFER
  IBM TEST E
                   P4, 12, 18MM
      MSAVEVALUE 1+,P4,P1,1,H
                   TEPEE
      TRANSFER
 IBMM TRANSFER
                   SBR, ASIGN, 12
      TRANSFER
                   SBR, HOWRD, 12
      TRANSFER
                   SBR, OTSTA, 12
                   P4,20, ++3
      TEST E
                   1+,P4,P1,1,H
      MSAVEVALUE
                  1+,19,P1,1,H
      MSAVEVALUE
      TEST NE
                   P4,20, TEPEE
      TEST E
                   BV19, 1, HIT
      MSAVEVALUE 1+, P4, P1, 1, H
  HIT ASSIGN
                   3-,2
      TRANSFER
                   TEPEE
THINK MSAVEVALUE 1+, P4, P1, 1, H
      TEST E
                   P4,21,*+2
      MSAVEVALUE 1+,22,P1,1,H
      ASSIGN
                   3+,1
      TRANSFER
                   SBR, ASIGN, 12
      TRANSFER
                   SBR, HOWRD, 12
      TRANSFER
                   SBR, CARRL, 12
                  1+,P4,P1,1,H
      MSAVEVALUE
                   P4, 25, JUNE
      TEST L
      TRANSFER
                   SBR, ASIGN, 12
      TRANSFER
                   SBR, HOWRD, 12
      GATE LS
                   KAY, WING
 INN
                   P4
                                           ADVANCED MISSION OPERATIONS OF
      QUEUE
      QUEUE
                   28
      TEST E
                   BV9,1
TNOW
      ASSIGN
                   2,61
MONEY GATE NI
                   P2, LOOK
      PREEMPT
                   P2
      DEPART
                   P4
      DEPART
                   28
                   P6, P7
      ADVANCE
      RETURN
                   P2
```

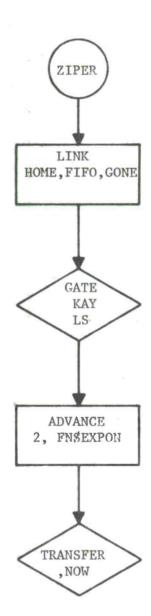
### MAIN PROGRAM (CONT'D)


```
LOOP
                    9, INN
      MSAVEVALUE 1+,P4,P1,1,H
      TRANSFER
                   GIRL
                   BETA, FIFO, INFO
      LINK
WING
 INFO GATE LS
                   KAY
      ADVANCE
                   2. FNSEXPON
      TRANSFER
                   INN
 LONK ASSIGN
                   2+,1
      TEST E
                   P2,91, MONEY
                   TNOV
      TRANSFER
WINM
      GATE LS
                   KAY, GOMF
                                        PHYSIOLOGICAL AND PSYCHOLOGICAL
                   P4
      QUEUE
      GATE SNF
                   3
      ENTER
                   3
      DEPART
                   P4
                   P6, P7
      ADVANCE
      LEAVE
                   3
CROSS
      MSAVEVALUE
                  1+, P4, P1, 1, H
      TRAMSFER
                   , EVON
                                       PSYCHOLOGICAL ROUTINE
                   TWO, FIFO, GOLF
GOOF
      LINK
 GOLF GATE LS
                   KAY
      ADVANCE
                   2. ENSEXPON
      TRANSFER
                  OWINA
JUNE
      TRANSFER
                   SBR, ASIGM, 12
      TRANSFER
                   SBR, HOWRD, 12
       TRANSFER
                   SBR, CARRL, 12
       MSAVEVALUE 1+,P4,P1,1,H
 GIRL TEST E
                   BV4,0,TAB
      TRANSFER
                   SBR, ASIGN, 12
       TRANSFER
                   SBR, HUMRO, 12
       TRANSFER
                   SBR, CARRL, 12
      MSAVEVALUE 1+++4,P1,1,H
       TRANFER
                   GIRL
TAB
       SAVEVALUE
                   P1, V9
       TABULATE
                   PI
       TERMINATE
      TABLE
                   X1,30,1,100
    2 TABLE
                   X2,30,1,100
    3 TABLE
                   X3,30,1,100
    4 TABLE
                   X4,30,1,100
    5
      TABLE
                   X5,30,1,100
    6 TABLE
                   X6,3:,1,100
     7 TABLE
                   X7,20,1,100
       START
                   225,,10
       SAVE
```

END

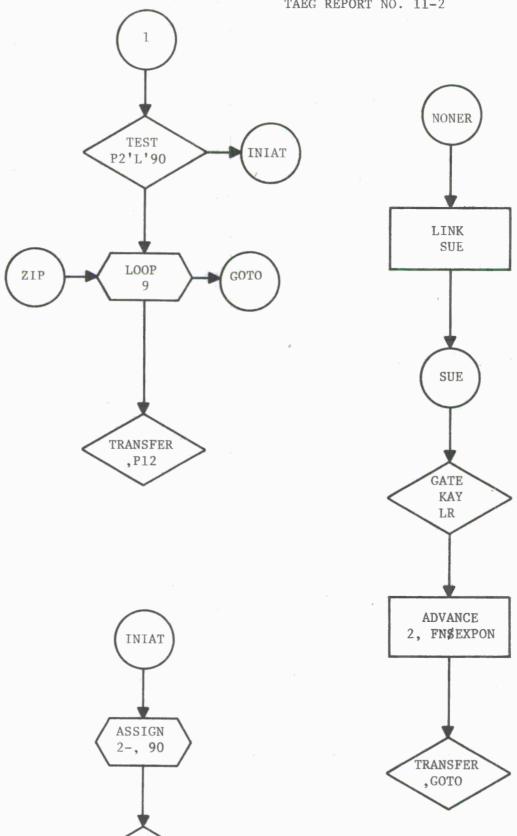

APPENDIX B




CARRL (Part 1)



Note: Sends student home at the end of an 8-hour day and returns him to school the next day. CARRL (Part 2)

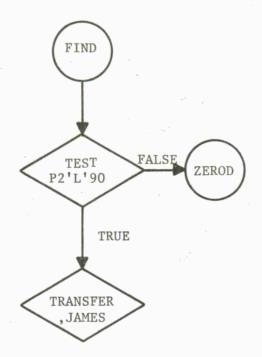



CAREL (Part 1)



CAREL (PART 2)

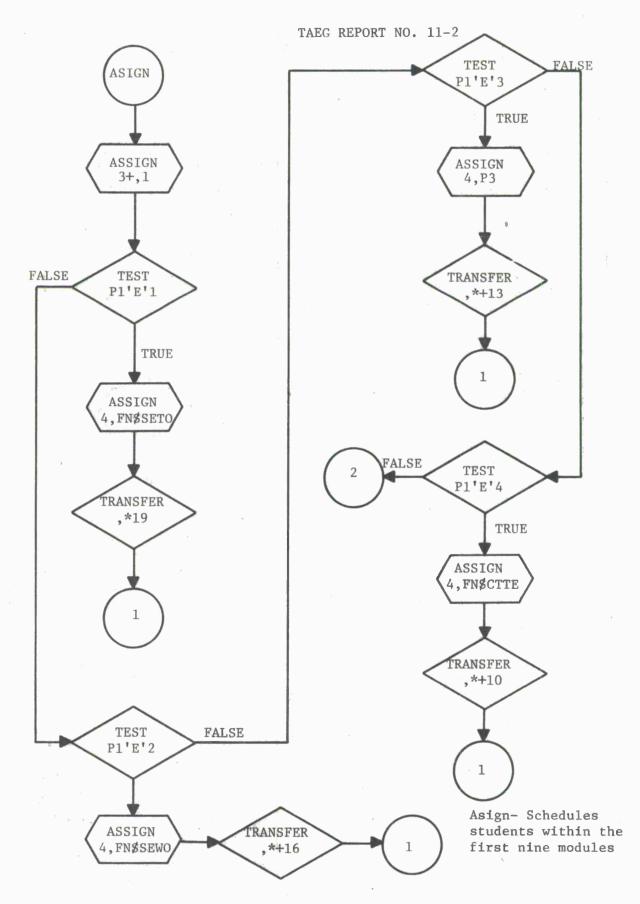
OTSTA (OPERATIONAL TRAINER STATION)
(PART 1)



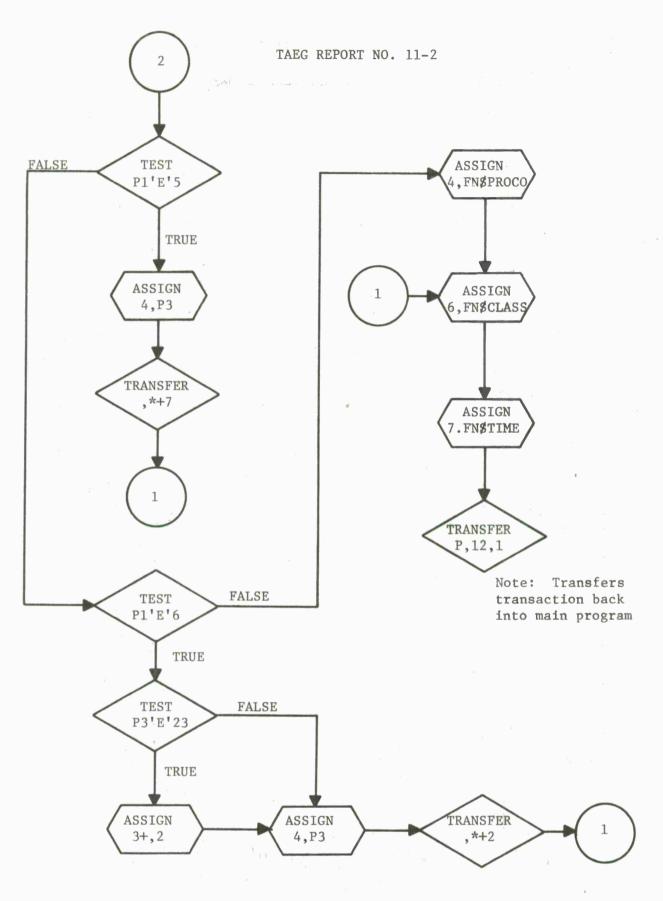


This routine sends students home at the end of an 8-hour day and puts them back into school at the beginning of the next day.

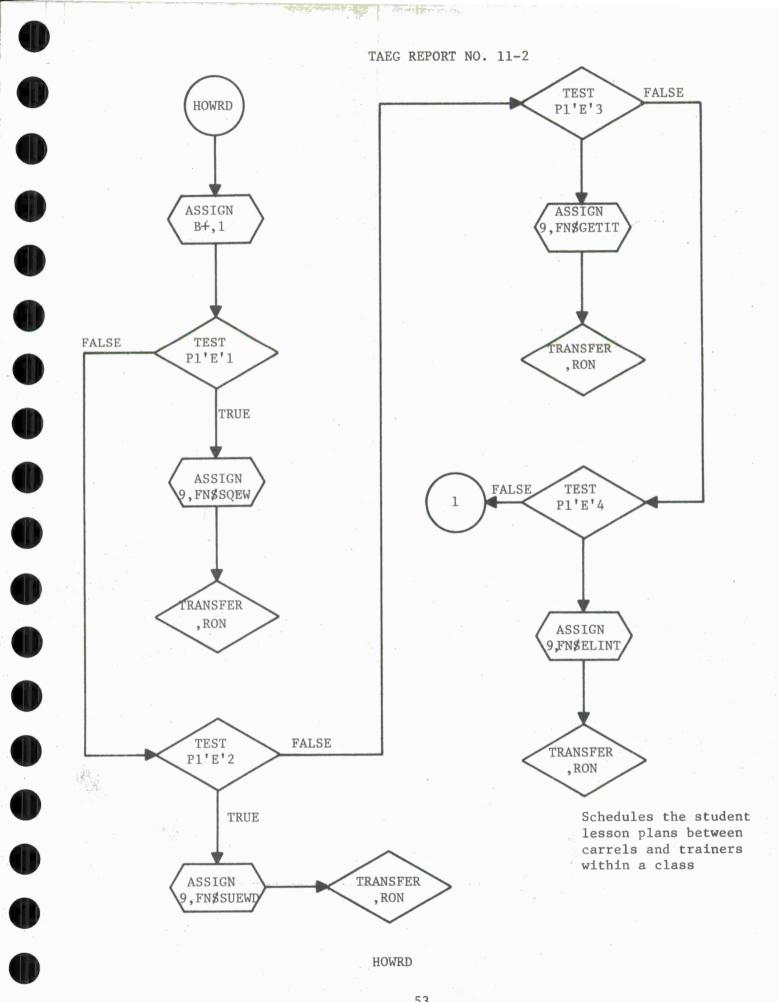
. OTSTA (PART 2)


TRANSFER

,ZIP



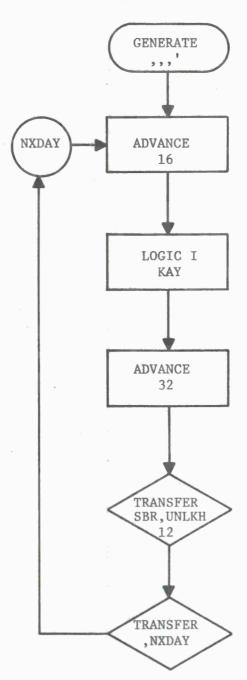




OTSTA (PART 3)



ASIGN (PART 1)

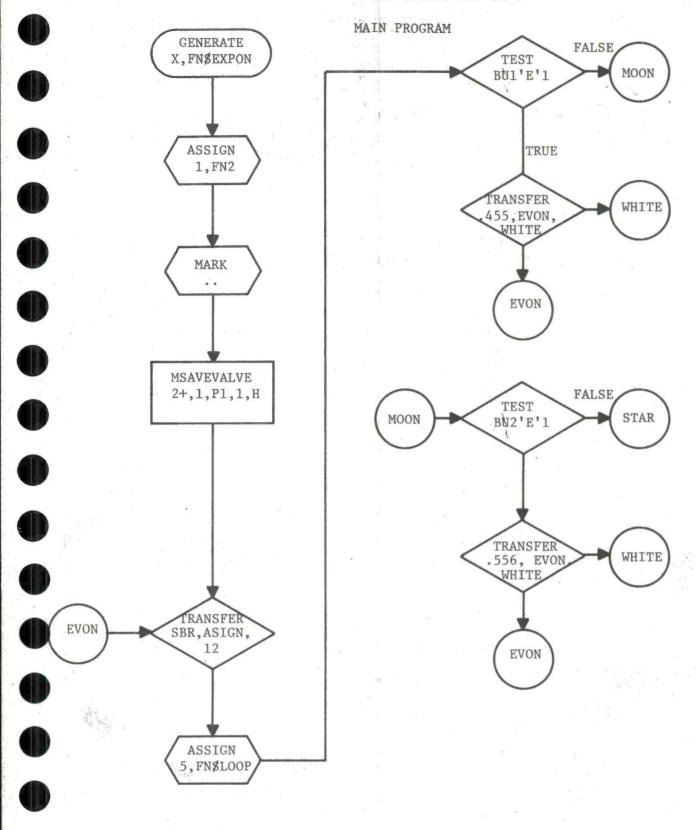


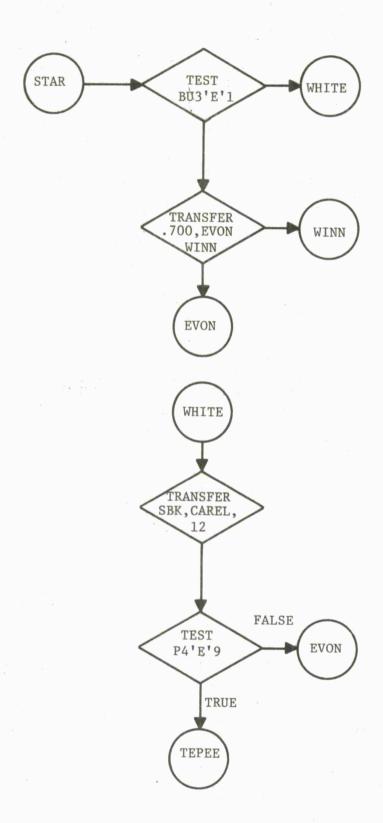

ASIGN (PART 2)

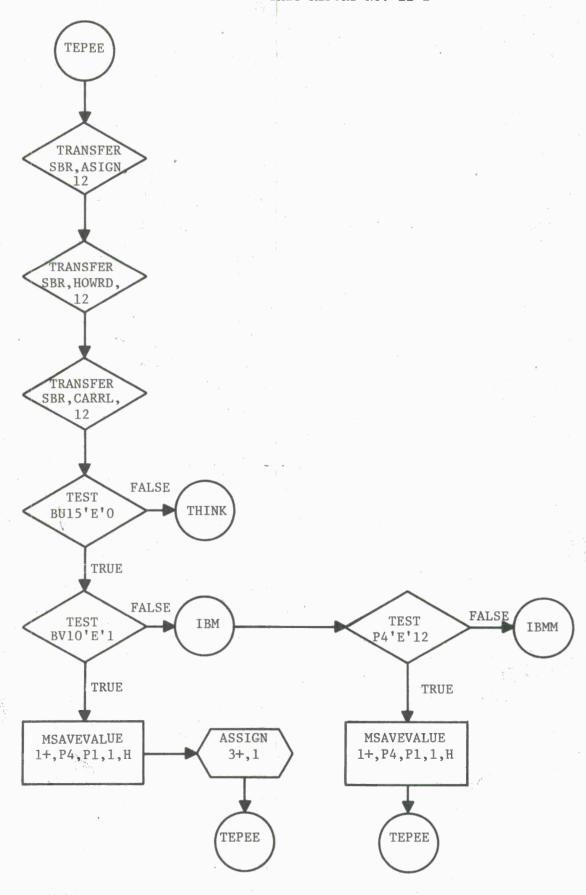


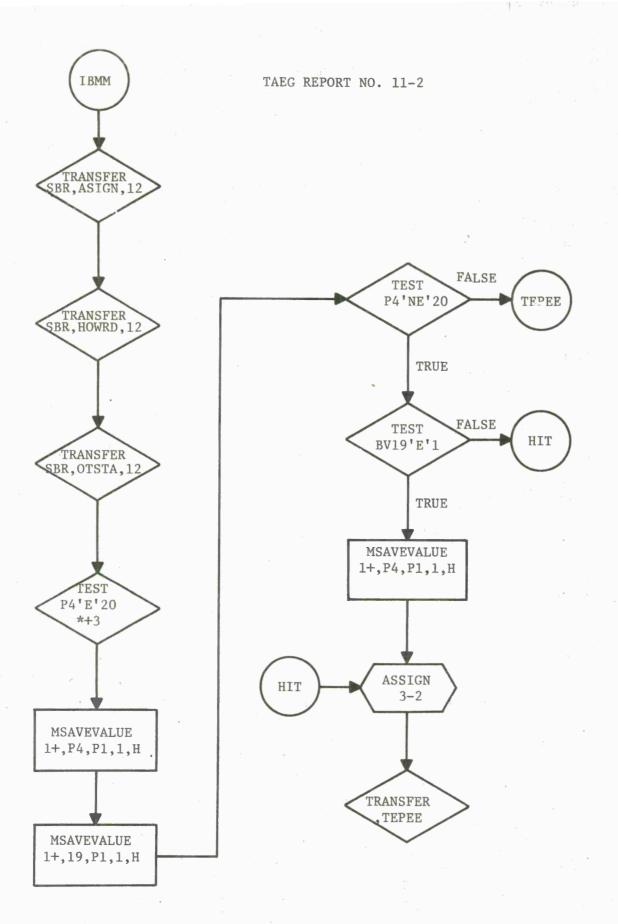
HOWRD (PART 2)

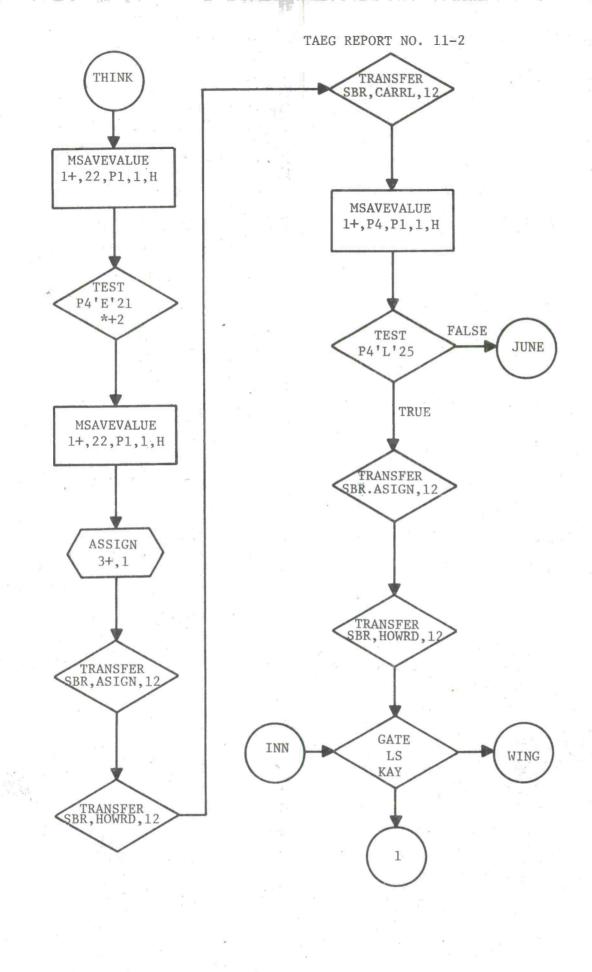
TRANSFER,\*+2

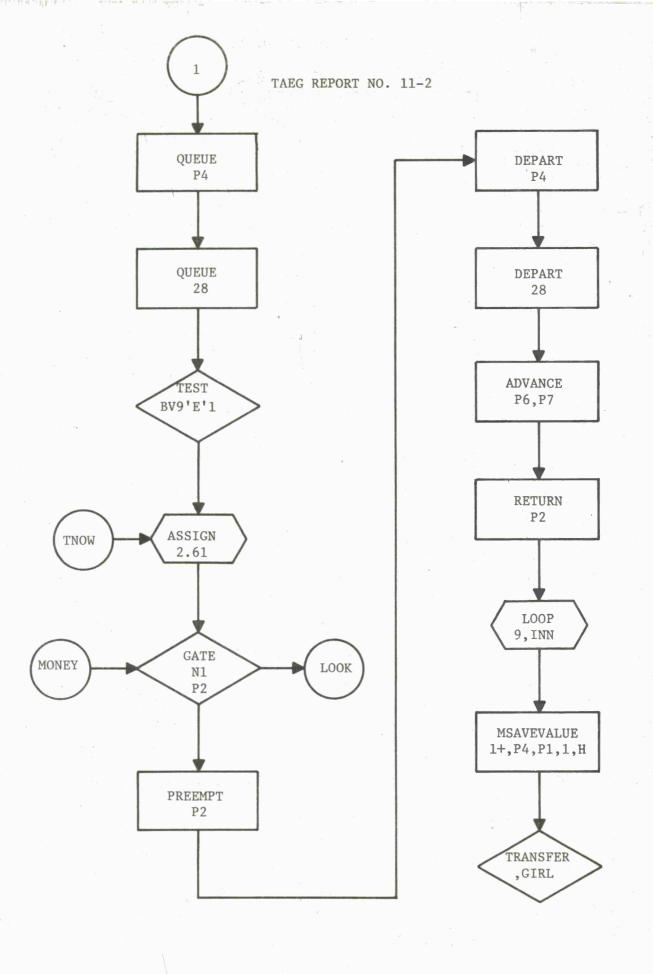

### TIME-ORIENTED PROGRAMS

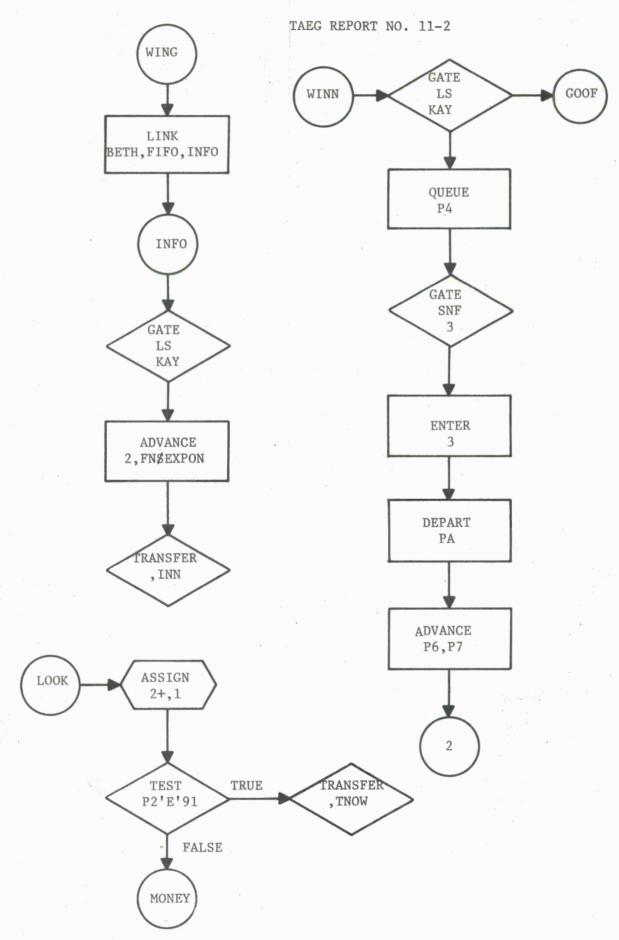


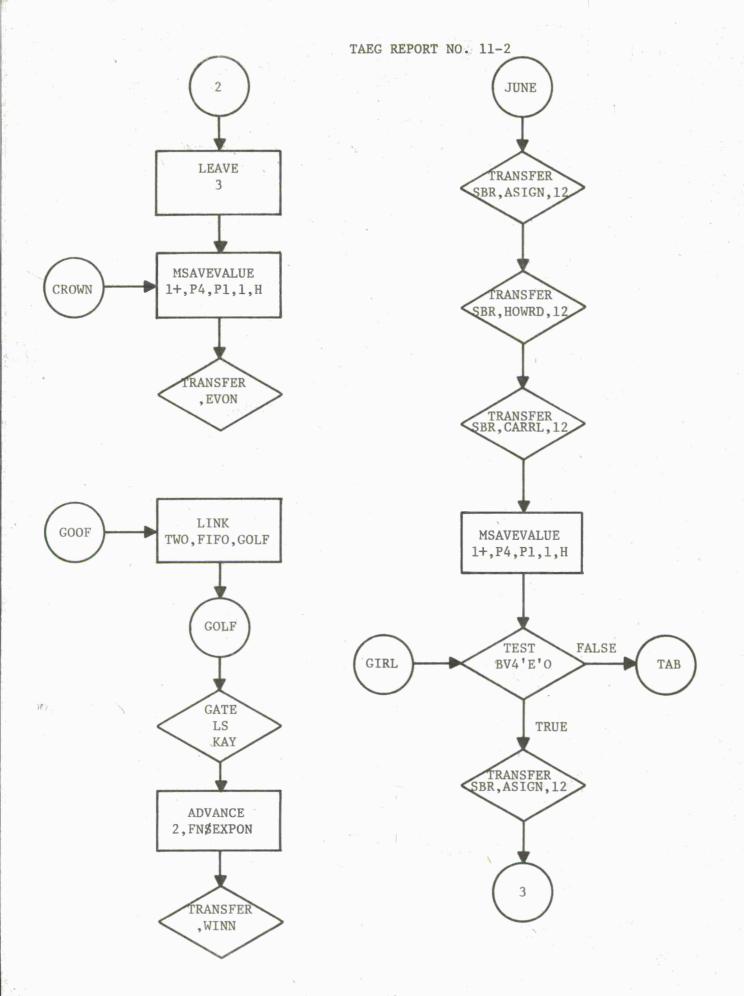


Note: Controls the number of hours for a school day, presently set at 8 hours

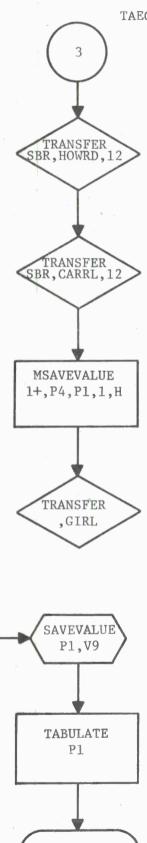




Note: Controls time in training period and number of training periods per day














TAB

TERMINATE

TAEG Report No. 11-2

APPENDIX C

SAMPLE OUTPUT

INPUT RATE 6 STUDENTS/DAY

| TRANSACTION NUMBER<br>SEIZING PREEMPTING | 107     | 237  | 591   | 1,1  | 85   | 70   | 102   |      | 246   | 229   | <u> </u> | 157   | 174   | 220   | 207   | 182  | 587   | 163  | 139  | 150   |      | 42   | 78    | 151  | , co | 22   | 178  | 281   |       | 68    | 226   |      | 284   | 234  | 196 | 49    | 239  | 141   | 179  | 156  | 305   |   |
|------------------------------------------|---------|------|-------|------|------|------|-------|------|-------|-------|----------|-------|-------|-------|-------|------|-------|------|------|-------|------|------|-------|------|------|------|------|-------|-------|-------|-------|------|-------|------|-----|-------|------|-------|------|------|-------|---|
| ERC                                      | $\circ$ | 0 0  | 100.0 | 00   | 00   | 000  | 100.0 | 00   | 100.0 | 100.0 | 100-0    | 100.0 | 100.0 | 1:0.0 | 100.0 | 000  | 100.0 |      | 000  | 100.0 | 00   | 00   | 00    | 100  |      | 0    | 00   | 100.0 | 0.001 | 0.001 | 100.0 |      | 100.0 |      | 0 0 | 100.0 |      | 100.0 |      |      | 100.0 |   |
| CURRENT                                  |         |      |       |      |      |      |       |      |       |       |          |       |       |       |       |      |       |      |      |       |      |      |       |      |      |      |      |       |       |       |       |      |       |      |     |       |      |       |      |      |       |   |
| TION DURING-<br>UNAVAIL.<br>TIME         |         |      |       |      |      |      |       |      |       |       |          |       |       |       |       |      |       |      |      |       |      |      |       |      |      |      |      |       |       |       |       | *    |       |      |     |       |      |       |      |      |       |   |
| UTILIZA<br>AVAIL.<br>TIME                |         |      |       |      |      |      |       |      |       |       |          |       |       |       |       |      |       |      |      |       |      |      |       |      |      |      |      |       |       |       |       |      |       |      |     |       |      |       |      |      |       | 1 |
| -AVERAGE<br>TOTAL<br>TIME                | .270    | .262 | . 245 | .248 | .254 | .238 | .240  | .242 | .235  | .234  | 147.     | .236  | .231  | •239  | .225  | .221 | . 220 | 2000 | .222 | .218  | .217 | .229 | . 208 | .218 | 217. | .217 | .229 | .220  | .207  | 2023  | .217  | .217 | .213  | .225 | 277 | .210  | .199 | .196  | .194 | -207 | 192   | • |
| SE<br>TRA                                | 000.9   | 84   | .91   | 89   | .91  | .98  | 81    | .03  | .83   | • 73  | 00.      | 00.   | •69   | • 03  | .11   | -77  | 889   |      | 84   | 88    | .95  | .34  | •66   | 6.   |      | .92  | .15  | • 89  | 96.   | • R   | 0.03  | .37  | • 43  | .31  | 90  |       | 0.4  | .89   | .98  | •36  | 2 6   |   |
| NUMBER<br>ENTRIES                        | 22.6    | 212  | 208   | 203  | 216  | 199  | 207   | 201  | 202   | 205   | 107      | 195   | 204   | 199   | 185   | 192  | 189   | 190  | 191  | 186   | 183  | 181  | 184   | 183  | 187  | 184  | 187  | 187   | 174   | 170   | 180   | 171  | 166   | 179  | 180 | 170   | 165  | 167   | 163  | 163  | 165   | • |
| FACILITY                                 | 7 7     | n 4  | 5 4   | ۷ د  | 80   | 6 (  | 11    | 12   | 13    | 14    | 15       | 17    | 18    | 19    | 20    | 21   | 22    | 2.5  | 25   | 26    | 27   | 28   | 29    | 30   | 32   | 33   | 34   | 35    | 36    | 9 6   | 6.6.  | 04   | 41    | 42   | 43  | 44    | 46   | 47    | 48   | 64   | 51    |   |

|                                                          |   |                       | MAXIMUM         | CONTENTS     | 220    | 06     | 7      |
|----------------------------------------------------------|---|-----------------------|-----------------|--------------|--------|--------|--------|
|                                                          | ۰ |                       | CURRENT         | CONTENTS     | 220    | 72     | 2      |
|                                                          |   |                       | PERCENT         | AVAILABILITY | 100.0  | 100.0  | 100.0  |
|                                                          |   | ı                     | CURRENT         | STATUS       |        |        |        |
| ***                                                      |   | E UTILIZATION DURING- | UNAVAIL.        | TIME         |        |        |        |
| ***                                                      |   | UTILIZAT              | AVAIL.          | TIME         |        |        |        |
| ***                                                      |   | AVERAGE               | TOTAL           | TIME         | .254   | .206   | .073   |
| 计操作标准 计设备 计计算性 化二甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基 |   | ,                     |                 | TIME/UNIT    | 3.627  | 5.985  | 16.834 |
|                                                          |   |                       | ENTRIES         |              | 77401  | 15586  | 356    |
|                                                          |   |                       | AVERAGE         | CONTENTS     | 56.066 | 18.627 | 1,196  |
|                                                          |   |                       | TORAGE CAPACITY |              | 220    | 06     | Cr     |
|                                                          |   |                       | STORAGE         |              | -      | 2      | (C     |

| CURRENT          | CONTENTS   |       |       |       |       |       |       |       |       |       | 8     |       |       |       |       |       |       | 2     |       |       |       | 2     |       |       |       | 1     |       | 13    |       |                  |
|------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------|
| TABLE            | NUMBER     |       |       |       |       |       | ٠     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                  |
| <b>\$AVERAGE</b> | TIME/TRANS | 2.199 | 1.599 | 1.307 | 1.500 | 0000  | 1.666 | 1.000 | 1.399 | 1.199 | 1.519 | 1.327 | 1.166 | 1.125 | 1.000 | 1.307 | 3.000 | 1.514 | 1.357 | 1.000 | 1.599 | 1.476 | 2.000 | 000   | 000   | 1.272 | 1.000 | 1.486 | 1.399 |                  |
| AVERAGE          | TIME/TRANS | .038  | .002  | .001  | 0000  | 0000  | .002  | 0000  | 0000  | .001  | .055  | .013  | 0000  | .003  | *00°  | .022  | .002  | . 074 | 900.  | 0000  | 900.  | .081  | .002  | 0000  | 0000  | .016  | • 004 | .015  | .007  |                  |
| PERCENT          | ZEROS      | 98.2  | 99.8  | 8.66  | 6.66  | 100.0 | 8.66  | 6.66  | 6.66  | 99.8  | 96.3  | 0.66  | 6.66  | 9.66  | 99.5  | 98.2  | 6.066 | 95.1  | 99.5  | 6.66  | 9.66  | 4.46  | 8.66  | 100.0 | 100.0 | 98.6  | 99.5  | 6.86  | 4.66  | ZERO ENTRIES     |
| ZERO             | ENTRIES    | 278   | 6269  | 9729  | 5193  | 356   | 2405  | 1789  | 9353  | 7448  | 9462  | 5827  | 10126 | 2327  | 494   | 1463  | 1471  | 4087  | 2960  | 1352  | 1320  | 2185  | 3459  | 96    | 235   | 825   | 1515  | 76612 | 15736 | EXCLUDING ZE     |
| TOTAL            | ENTRIES    | 283   | 6869  | 9742  | 5195  | 356   | 2408  | 1790  | 9358  | 7458  | 9818  | 5885  | 10132 | 2335  | 466   | 1489  | 1472  | 4297  | 2974  | 1353  | 1325  | 2313  | 3464  | 96    | 235   | 836   | 1522  | 77414 | 15821 | 10               |
| AVERAGE          | CONTENTS   | • 002 | .003  | .003  | 000   | 0000  | 0000  | 000   | .001  | .002  | .108  | .015  | .001  | .001  | 000   | 900*  | 000   | .063  | .003  | 000   | .001  | .037  | .001  | 0000  | 0000  | .002  | .001  | .238  | .023  | = AVERAGE T      |
| MAXIMUM          | CONTENTS   | 1     | 3     | 4     | 3     | 1     | 2     | 2     | 2     | 5     | 21    | 7     | 2     | 3     | 2     | . 4   | 2     | 11    | 5     | 2     | 2     | 7     | 4     | 1     | -     | 3     | 3     | 37    | 15    | TIME/TRANS       |
| QUEUE            |            | 1     | 2     | 3     | 4     | 2     | 9     | 7     | 8     | 6     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22    | 23    | 24    | 25    | 26    | 2.7   | 28    | <b>\$AVERAGE</b> |

QUEUES \*\*

| NON-WEIGHTED                | DEVIATION<br>FROM MEAN | -7.314 | -6.329 | -5.345 | -4.360 | -3.375 | -2.391 | -1.406 | 421   | .562  | 1.547   |                       |
|-----------------------------|------------------------|--------|--------|--------|--------|--------|--------|--------|-------|-------|---------|-----------------------|
| SUM OF ARGUMENTS<br>524.000 | MULTIPLE<br>OF MEAN    | .801   | .828   | .854   | .881   | * 908  | .935   | .961   | .988  | 1.015 | 1.041   |                       |
|                             | CUMULATIVE             | 100.0  | 100.0  |        | 100.0  | 100.0  | 100.0  | 78.5   | 50.0  | 14.2  | 0.      |                       |
| STANDARD DEVIATION 1.015    | CUMULATIVE             | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 21.4   | 6.64  | 85.7  | . 100.0 |                       |
| ARGUMENT<br>37.428          | PER CENT<br>OF TOTAL   | 00.    | 00.    | 00.    | 00.    | 00.    | 00.    | 21.42  | 28.57 | 35.71 | 14.28   |                       |
| MEAN                        | OBSERVED<br>FREQUENCY  | 0      | 0      | 0      | 0      | 0      | 0      | *      | 7     | 5     | 2       | ICIES ARE ALL ZERO    |
| TABLE 1<br>ENTRIES IN TABLE | UPPER                  | 30     | 31     | 32     | 33     | 34     | 35     | 36     | 37    | 38    | 39      | REMAINING FREQUENCIES |

TABLES

| CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIA  CON 0. 100.0 847  0 0. 100.0 874  0 0. 100.0 874  0 0. 100.0 874  0 0. 100.0 971  0 0. 100.0 973  0 18.1 81.8 983  27.27 45.4 54.5 983  4.54 100.0 0. 1.005                                                 | MEAN          | AR     | STANDARD DEVIATION | TION       | SUM OF ARGUMENTS |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--------------------|------------|------------------|--------------|
| PER CENT CUMULATIVE CUMULATIVE MULTIPLE  0F TOTAL PERCENTAGE REMAINDER OF MEAN  00 .00 .00 .00 .847  00 .00 .00 .00 .847  .00 .00 .00 .00 .001  18.18 .18.1 81.8 .95.4 .54.5 .983  36.36 81.8 81.8 .100.0 .00 .005                                     |               | 36.590 |                    | .097       | 805.000          | NON-WEIGHTED |
| OF TOTAL PERCENTAGE REMAINDER OF MEAN  .00 .00 .00 .00 .00 .00 .00 .00 .00 .0                                                                                                                                                                          | - 11          |        | CUMULATIVE         | CUMULATIVE | MULTIPLE         | DEVIATION    |
| .00 .00 .00 .819 .00 .00 .00 .00 .847 .00 .00 .00 .00 .847 .00 .00 .00 .00 .874 .00 .00 .00 .00 .901 .00 .00 .00 .001 .00 .00 .001 .00 .00 .001 .00 .001 .00 .001 .00 .001 .00 .001 .00 .001 .00 .001 .00 .001 .00 .001                                | -             |        | PERCENTAGE         | REMAINDER  | OF MEAN          | FROM MEAN    |
| .00 .00 .00 .847<br>.00 .00 .00 .00 .004<br>.00 .00 .00 .004<br>.00 .00 .005<br>.00 .00 .005<br>.00 .000 .005<br>.00 .000 .001<br>.00 .001 | $\overline{}$ | 00°    | 0.                 | 100.0      | .819             | -6.004       |
| .00 .00 .00 .874<br>.00 .00 .00 .00 .001<br>.00 .00 .00 .002<br>18.18 .18 .18 .956<br>27.27 45.4 54.5 .983<br>36.36 81.8 .983<br>13.63 81.8 .18.1 1.011<br>13.63 95.4 4.5 1.038<br>4.54 100.0 .0 1.065                                                 | -             | 00.    | 0.                 | 100.0      | .847             | -5.093       |
| .00 .00 .00 .901<br>.00 .00 .00 .929<br>18.18 .18 .18 .956<br>27.27 .45.4 .54.5 .983<br>36.36 .81.8 .983<br>13.63 .95.4 .4.5 1.038<br>4.54 .100.0 .0 1.065                                                                                             | _             | 00.    | 0.                 | 100.0      | .874             | -4.182       |
| .00     .0     100.0     .929       18.18     18.8     .956       27.27     45.4     54.5     .983       36.36     81.8     18.1     1.011       13.63     95.4     4.5     1.038       4.54     100.0     .0     1.065                                | _             | 00.    | 0.                 | 100.0      | .901             | -3.271       |
| 18.18     18.1     81.8     .956       27.27     45.4     54.5     .983       36.36     81.8     18.1     1.011       13.63     95.4     4.5     1.038       4.54     100.0     1.065                                                                  | _             |        | 0.                 | 100.0      | .929             | -2.360       |
| 27.27       45.4       54.5       .983         36.36       81.8       18.1       1.011         13.63       95.4       4.5       1.038         4.54       100.0       1.065                                                                             | 4             |        | 18.1               | 81.8       | .956             | -1.449       |
| 36.36 81.8 18.1 1.011<br>13.63 95.4 4.5 1.038<br>4.54 100.0 .0 1.065                                                                                                                                                                                   | _             |        | 45.4               | 54.5       | .983             | 538          |
| 13.63 95.4 4.5 1.038<br>4.54 100.0 .0 1.065                                                                                                                                                                                                            | -             | Α,     | 81.8               | 18.1       | 1.011            | .372         |
| 100.0 1.065                                                                                                                                                                                                                                            | 4.4           |        | 95.4               | 4.5        | 1.038            | 1.283        |
|                                                                                                                                                                                                                                                        |               | 1 4.54 | 100.0              | 0.         | 1.065            | 2.194        |

| TABLE   | 3                     |                 |                    |                          |                |                  |              |
|---------|-----------------------|-----------------|--------------------|--------------------------|----------------|------------------|--------------|
| ENTRIES | IN TABLE              | MEAN AR         | ARGUMENT<br>49.166 | STANDARD DEVIATION 3.652 | ATION<br>3.652 | SUM OF ARGUMENTS | NON-WEIGHTED |
|         | UPPER                 | OBSERVED        | PER CENT           | CUMULATIVE               | CUMULATIVE     | MUI TIPE F       | DEVIATION    |
|         | LIMIT                 | FREQUENCY       | OF TOTAL           | PERCENTAGE               | REMAINDER      | OF MEAN          | FROM MEAN    |
|         | 30                    | 0               | 00°                | 0.                       | 100.0          |                  | -5.247       |
|         | 31                    | 0               | 00°                | 0.                       | 100.0          | •630             | -4.973       |
| •       | 32                    | 0               | 00.                | 0.                       | 100.0          | •650             | -4.700       |
|         | 33                    | 0               | 00.                | 0.                       | 100.0          | .671             | -4.426       |
|         | 34                    | 0               | 00°                | 0.                       | 100.0          | . 691            | -4.152       |
|         | 35                    | 0               | 00°                | 0.                       | 100.0          | . 711            | -3.8.8       |
|         | 36                    | 0               | 00.                | 0.                       | 100.0          | .732             | -3.604       |
|         | 37                    | 0               | 00°                | 0.                       | 100.0          | .752             | -3.331       |
|         | 38                    | 0               | 00°                | 0.                       | 100.0          | .772             | -3.057       |
|         | 39                    | 0               | 00.                | 0.                       | 100.0          | .793             | -2.783       |
|         | 04                    | 0               | 00.                | 0.                       | 100.0          | .813             | -2.509       |
|         | 41                    | 0               | 00.                | 0.                       | 100.0          | .833             | -2.236       |
|         | 4.2                   | 0               | 00.                | 0.                       | 100.0          | .854             | -1.962       |
|         | 43                    | 0               | 00°                | 0.                       | 100.0          | .874             | -1.688       |
|         | 77                    | 0               | 00°                | 0.                       | 100.0          | .894             | -1.414       |
|         | 45                    | ,<br>port       | 16.66              | 16.6                     | 83.3           | .915             | -1.140       |
|         | 94                    |                 | 16.66              | 33.3                     | 9.99           | .935             | 867          |
|         | 47                    | _               | 16.66              | 6.64                     | 50.0           | .955             | 593          |
|         | 48                    | 0               | 00.                | 6.64                     | 50.0           | 976.             | 319          |
|         | 64                    | 0               | 00°                | 6.64                     | 50.0           | 966*             | 045          |
|         | 20                    | 0               | 00.                | 6.64                     | 50.0           | 1.016            | •228         |
|         | 51                    | -               | 16.66              | 9.99                     | 33.3           | 1.037            | .501         |
|         | 52                    | 1               | 16.66              | 83.3                     | 16.6           | 1.057            | .775         |
|         | 53                    | 0               | 00.                | 83.3                     | 16.6           | 1.077            | 1.049        |
|         | 54                    |                 | 16.66              | 100.0                    | 0.             | 1.098            | 1,323        |
| REMAINI | REMAINING FREQUENCIES | ES ARE ALL ZERO | 0                  |                          |                |                  |              |

| NON-WEIGHTED                 |      | DEVIATION  | FROM MEAN  | -3.874 | -3.597 | -3.321 | -3.044 | -2.767 | -2.490 | -2.214 | -1.937 | -1.660 | -1,383 | -1.107 | 830  | 553   | 276  | 000   | .276  | .553  | .830  | 1.107 | 1.383 | 1.660 | 1.937 | 2.214 |           |
|------------------------------|------|------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
| SUM OF ARGUMENTS             |      | MULTIPLE   | OF MEAN    | .681   | • 104  | .727   | .750   | .772   | .795.  | .818   | .840   | .863   | .886   | 606°   | .931 | .954  | 176. | 1.000 | 1.022 | 1.045 | 1.068 | 1.090 | 1.113 | 1.136 | 1.159 | 1.181 |           |
|                              | )    | CUMULATIVE | REMAINDER  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 81.2   | 75.0 | 50.0  | 43.7 | 37.5  | 31.2  | 31.2  | 25.0  | 6.2   | 6.2   | 6.2   | 6.2   | 0.    |           |
| STANDARD DEVIATION           |      | CUMULATIVE | PERCENTAGE | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 18.7   | 25.0 | 50.0  | 56.2 | 62.5  | 68.7  | 68.7  | 75.0  | 93.7  | 93.7  | 93.7  | 93.7  | 100.0 |           |
| ARGUMENT                     | )))) | PER CENT   | - in-      | 00.    | 00°    | 00.    | 00.    | 00°    | 00 •   | 00.    | 00.    | 00°    | 00.    | 18.75  | 6.25 | 25.00 | 6.25 | 6.25  | 6.25  | 00.   | 6.25  | 18.75 | 00°   | 00.   | 00.   | 6.25  | FBU       |
| MEAN                         |      | OBSERVED   | EQUEN      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 3      | 1    | 4     |      | 1     | 1     | 0     | _     | 6     | 0     | 0     | 0     | _     | ARF ALL 7 |
| IABLE :4<br>ENTRIES IN TABLE |      | UPPER      | $\sum$     | 30     | 31     | 32     | 88     | 34     | 35     | 36     | 37     | 38     | 39     | 040    | 41   | 42    | 43   | 77    | 45    | 94    | 47    | 48    | 64    | 50    | 51    | 52    |           |

| NON-WEIGHTED                | DEVIATION<br>FROM MEAN   | -12.162 | -11.642 | -11.121 | -10.601 | -10.081 | -9.560 | -9.040 | -8.520 | -8.000 | -7-479 | -6.959 | -6.439 | -5.918 | -5.398 | -4.878 |       |       | -3.317 |       | -2.276 | -1.756 | -1.235 | 715   | 195   | .325  | .845  | 1.365 | 1.886 |                       |
|-----------------------------|--------------------------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-----------------------|
| SUM OF ARGUMENTS<br>427.000 | MULTIPLE<br>OF MEAN      |         | .580    | 665*    | .618    | .637    | .655   | +19.   | •693   | .711   | .730   | 671.   | .768   | •      | . 805  | .824   | .843  | .861  | .880   | 668*  | .918   | .936   | .955   | ,974° | .992  | 1.011 | 1.030 | 1.049 | 1.067 |                       |
| DEVIATION<br>1.921          | CUMULATIVE               | 100     | 100.0   | 00      | 100.0   | 00      | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0 | 100.0 | 100.0  | 100.0 | 100.0  | 100.0  | 87.5   | 62.5  | 37.5  | 25.0  | 12.5  |       | 0.    |                       |
| STANDARD DEVI               | CUMULATIVE<br>PERCENTAGE |         | 0.      | 0.      | 0.      | 0.      | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 0.     | 0.    | 0.    | 0.     | 0.    | 0.     | 0.     | 12.5   | 37.5  | 62.5  | 75.0  | 87.5  | 87.5  | 100.0 |                       |
| RGUMENT<br>53.375           | PER CENT<br>OF TOTAL     | 00.     | 00.     | 00.     | 00°     | 00.     | 00.    | 00.    | 00.    | 00.    | 00°    | 00.    | 00.    | 00.    | 00.    | 00.    | 00.   | 00.   | 00.    | 00.   | 00.    | 00.    | 12.50  | 25.00 | 25.00 | 12.50 | 12.50 | 00°   | 12.50 | RO                    |
| MEAN AF                     | OBSERVED                 | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0      | 0     | 0      | 0      | 1      | 2     | 2     | 1     |       | 0     | end.  | ARE ALL ZE            |
| TABLE 5<br>ENTRIES IN TABLE | UPPER                    | 30      | 31      | 32      | 33      | 34      | 35     | 36     | 37     | 38     | 39     | 0 4    | 41     | 42     | 43     | 77     | 45    | 94    | 24     | 48    | 67     | 50     | 51     | 52    | 53    | 54    | 55    |       | 57    | REMAINING FREQUENCIES |

| PERCENTAGE REMAINDER OF MEAN FROM MEAN  -0 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.83               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 100.00 632<br>100.00 653<br>100.00 653<br>100.00 653<br>100.00 734<br>100.00 758<br>100.00 822<br>100.0 864<br>96.5 864<br>96.5 864<br>96.5 864<br>96.5 969<br>77.8 906<br>77.8 906<br>77.8 906<br>77.8 906<br>77.9 906<br>77.1 900<br>77.2 1.001<br>3.0 1.001<br>96.3 906<br>96.3 906<br>96.3 906<br>97.3 900<br>97.4 900<br>97.4 900<br>97.5 900<br>97.7 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FREQUENCY OF TOTAL |
| 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>10 |                    |
| 100.00 .674 100.0 .716 100.0 .737 100.0 .737 100.0 .779 100.0 .843 100.0 .843 100.0 .864 96.5 .885 89.6 .906 77.8 .927 62.5 .948 54.9 .969 56.7 .990 44.2 1.011 35.1 1.032 7.2 1.075 3.0 1.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
| 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>10 | 00.                |
| 100.00 .716 100.00 .737 1000.0 .737 1000.0 .758 1000.0 .862 1000.0 .863 1000.0 .864 96.5 .864 96.5 .966 77.8 .927 62.5 .969 56.7 .990 44.2 1.011 35.1 1.032 7.2 1.075 3.3 1.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>10 |                    |
| 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>10 | 00.                |
| 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>10 |                    |
| 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>10 |                    |
| 100.0 100.0 843 100.0 843 100.0 864 96.5 89.6 906 77.8 62.5 948 54.9 969 50.7 1.011 35.1 1.032 7.2 1.075 3.0 1.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00.                |
| 100.0  100.0  8643  96.5  8854  96.5  8856  9066  77.8  927  1007  44.2  1003  21.3  1005  1005  1006  1006  1006  1006  1006  1006  1006  1006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| 100.0<br>96.5<br>885<br>885<br>885<br>885<br>89.6<br>906<br>-1<br>54.9<br>50.7<br>44.2<br>1.011<br>35.1<br>1.032<br>7.2<br>1.053<br>7.2<br>1.053<br>7.2<br>1.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00.                |
| 96.5 96.5 89.6 89.6 89.6 89.6 89.6 89.6 89.6 89.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| 89.6 .9061 77.8 .9271 62.5 .9482 50.7 .9902 44.2 1.011 35.1 1.032 7.2 1.053 7.2 1.075 3.0 1.096 1.17 0.0 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 77.8 .927 -1<br>52.5 .948 -2<br>50.7 .969 -390 -35.1 1.011 -35.1 1.032 -3.0 1.053 -1 1.053 -1 1.053 -1 1.053 -1 1.053 -1 1.055 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.096 -1 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 6.87            |
| 62.5<br>54.9<br>50.7<br>64.2<br>64.2<br>1.001<br>35.1<br>1.032<br>7.2<br>1.053<br>7.2<br>1.053<br>7.2<br>1.053<br>7.2<br>1.053<br>7.2<br>1.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
| 54.9<br>50.7<br>44.2<br>44.2<br>1.011<br>35.1<br>1.032<br>21.3<br>7.2<br>1.053<br>7.2<br>1.075<br>1.096<br>1.096<br>1.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| 50.7 .990<br>44.2 1.011<br>35.1 1.032<br>21.3 1.053<br>7.2 1.075 1<br>3.0 1.096 1<br>.3 1.117 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| 44.2<br>35.1<br>1.032<br>21.3<br>7.2<br>1.053<br>7.2<br>1.053<br>3.0<br>1.075<br>1.096<br>1.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 4.19            |
| 35.1 1.032<br>21.3 1.053<br>7.2 1.075 1<br>3.0 1.096 1<br>.3 1.117 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 6.48            |
| 21.3 1.053<br>7.2 1.075 1<br>3.0 1.096 1<br>.3 1.117 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| 7.2 1.075 1<br>3.0 1.096 1<br>.3 1.117 1<br>.0 1.138 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36 13.74           |
| 3.0 1.096 1.<br>3 1.117 1.<br>0 1.138 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37 14.12           |
| .3 1.117 1<br>.0 1.138 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 4.19            |
| .0 1.138 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 38               |

| Q                           |                        |        |        |       |       |       |       |                                    |
|-----------------------------|------------------------|--------|--------|-------|-------|-------|-------|------------------------------------|
| NON-WEIGHTED                | DEVIATION<br>FROM MEAN | -1.968 | -1.057 | 146   | .764  | 1.675 | 2.586 |                                    |
| SUM OF ARGUMENTS 687.000    | MULTIPLE<br>OF MEAN    |        |        |       |       |       |       |                                    |
|                             | CUMULATIVE             | 7.96   | 1.19   | 41.9  | 6.4   | 3.2   | 0.    |                                    |
| STANDARD DEVIATION          | CUMULATIVE             | 3.2    | 32.2   | 58.0  | 93.5  | 7.96  | 100.0 |                                    |
| ARGUMENT<br>22.161          | PER CENT<br>OF TOTAL   | 3.22   | 29.03  | 25.80 | 35.48 | 3.22  | 3.22  |                                    |
| MEAN AR                     | DBSERVED               |        | 6      | 80    | 11    | ~     | ~     | ES ARE ALL ZER                     |
| TABLE 7<br>ENTRIES IN TABLE | UPPER                  | 20     | 21     | 22    | 23    | 24    | 25    | REMAINING FREQUENCIES ARE ALL ZERO |

| HALFWORD MATRIX | -        |     |              |     |    |        |    |
|-----------------|----------|-----|--------------|-----|----|--------|----|
| ROW/COLUMN      | red.     | 2   | 3            | . 4 | S  | 9      | 7  |
|                 | 0        | 0   | 4            | 14  |    | -      | 0  |
| 2               | 0        | 0   | 7            | 11  |    | 5      | 0  |
| m               | 0        | 29  | 14           | 22  |    | -      | 0  |
| 4               | 20       | 29  |              | 22  |    | 9      | 0  |
| 5               | 0        | 0   | 7            | 0   |    | N      | 0  |
| 9               | 20       | 28  | 13           | 22  |    | 5      | 38 |
| 7               | 20       | 28  | 13           | 22  |    | LO.    | 38 |
| 8               | 20       | 0   | 12           | 22  |    | 4      | 0  |
| 6               | 18       | 28  | 12           | 21  | 18 | 426    | 37 |
|                 | 17       | 26  | 11           | 19  |    | 2      | 0  |
| 11              | 17       | 26  | 11           | 19  |    | ~      | 0  |
| 12              | 17       | 26  | 11           | 18  |    | 5      | 37 |
| 13              | 17       | 24  | 6            | 17  |    | 3      | 37 |
| 14              | 17       | 24  | 6            | 17  |    | 3      | 37 |
| 15              | 0        | 0   | 6            | 7   |    | $\sim$ | 0  |
| 16              | 0        | 0   | 6            | 17  |    | $\sim$ | 0  |
| 17              | 16       | 23  | œ            | 16  |    | 0      | 34 |
| 18              | 16       | 23  | œ            | 16  |    |        | 34 |
| 19              | 16       | 0   | 7            | 0   |    | 9      | 0  |
| 20              | 16       | 0   | 7            | 0   |    | O.     | 0  |
| 21              | 15       | 22  | 7            |     |    | 9      | 31 |
| 22              |          | 22  | 2            | 16  |    | 9      | 31 |
| 23              | 0        | 0   | 7            |     |    | 0      | 31 |
| 24              | 0        | 0   | 7            | 0   | 6  | 0      | 31 |
| 25              | 15       | 22  | 9            | 16  | 6  | 266    | 31 |
| 26              | 14       | 22  |              | -   | 89 | 9      | 0  |
|                 | ROWS 27- | 28, | 1-7 ARE ZERO | 0.  |    |        |    |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

HALFWORD MATRICES